.RU
Карта сайта

Углеводы Издательство "Наука" - 3


По той же схеме, по которой строятся дисахариды, можно связать цепочку из трех моносахаридных остатков. Такие соединения называются трисахаридами. Их примерами могут служить целлотриоза (31) и солатриоза (32). Первая построена из трех остатков D-глюкозы, вторая – из остатков L-рамнозы, D-глюкозы и D-галактозы.

При переходе к трисахаридам обнаруживаются две качественно новые особенности компоновки структур: во-первых, в соединениях типа целлотриозы, центральный моносахаридный блок выступает одновременно и в роли агликона, и в роли гликозильного остатка; во-вторых, два гликозильных остатка могут быть присоединены к одному и тому же моносахаридному остатку (который таким образом оказывается, так сказать, дважды агликоном). В цепи моносахаридных остатков появляется разветвление. Такие трисахариды называются разветвленными, а остаток, к которому присоединены два гликозильных остатка(«дважды агликон»), называют точкой ветвлений. Так, солатриоза (32) – разветвленный трисахарид, точкой ветвления в котором служит остаток D-галактозы.
Аналогично трисахаридам устроены тетрасахариды (четыре моносахаридных остатка), пентасахариды, гексасахариды и т.д. Весь же класс таких соединений называют олигосахаридами («олиго»-несколько). Если говорить о качественно новых структурных особенностях высших олигосахаридов, то можно указать на возможность существования нескольких разветвлений в одной молекуле.
Олигосахариды могут отличаться одним от другого структурой входящих в них моносахаридов, их последовательностью в цепи, наличием или отсутствием разветвлений, размерами циклов (фураноза-пираноза), конфигурацией гликозидных центров и местами присоединения гликозильных остатков к агликонам. Все это в совокупности приводит к возникновению невообразимо огромного числа возможных изомеров даже у сравнительно простых олигосахаридов.
Обратимся к арифметическому расчету. Из двух разных гексоз, скажем из D-глюкозы и D-галактозы, можно
построить 56 изомерных дисахаридов. Из трех гексоз (например, из D-глюкозы, D-галактозы и D-маннозы) – 4896 изомерных трисахаридов, из четырех гексоз – 374784 тетрасахарида. Если же учесть еще возможные вариации в структуре исходных моносахаридов, то цифры становятся поистине астрономическими. Так, из восьми гексоз D-ряда можно построить различных дисахаридов – 3136, трисахаридов – 1645056 и т.д. Но не будем увлекаться. Вспомним, что число индивидуальных органических соединений всех классов человечеству пока известно всего несколько миллионов, а олигосахаридов среди них – меньшинство. К чему же тогда запугивать читателя такой арифметикой? А вот к чему.
Во-первых, из того, что подавляющее большинство этих несметных полчищ олигосахаридов нам неизвестно, еще не следует, что их не может быть вообще. Поэтому при изучении строения нового олигосахарида исследователь обязан учитывать, что это соединение может иметь любую структуру из числа тех тысяч и миллионов изомеров, возможность существования которых предсказывает для него структурная теория. Например, если мы выделили тетрасахарид и уже знаем, из каких именно моносахаридов он состоит (пусть это будут для определенности четыре различных гексозы), то дальнейшая задача структурного исследования – выбрать для него одну (единственную!) структуру из 374784 возможных. На случайный выигрыш в такой лотерее рассчитывать не приходится.
Во-вторых, для живой клетки такое огромное разнообразие возможных структур, включающее считанные единицы мономерных остатков, означает гигантские информационные возможности, совершенно несопоставимые по мощности с возможностями такого классического информационного материала, как последовательность нуклеотидных звеньев в нуклеиновых кислотах. Вспомним: трехбуквенный генетический код позволяет построить из четырех основных природных нуклеотидов всего 64 «слова», тогда как из восьми гексоз (а разнообразие природных моносахаридов гораздо больше) уже можно составить 1645056 трисахаридных «слов»*.
Такое сопоставление заставляет задуматься. Неужели эволюция сумела создать сахара и не сумела как следует распорядиться их информационной емкостью? В течение длительного времени казалось, что действительно не сумела. Однако в последние годы становится ясно, что олигосахаридные остатки на поверхности клеток и макромолекул служат тем сигналом, по которому клетки или макромолекулы различают друг друга. Иначе говоря, эволюция использовала информационные возможности сахаров, и притом наиболее рациональным и экономным способом: там, где при помощи минимального числа носителей информации нужно добиться максимального, практически неограниченного разнообразия индивидуальных характеристик.
Структура полисахаридов
Углеводные цепи, построенные по принципу олигосахаридов, можно продолжать почти до бесконечности. Так создаются высокомолекулярные структуры – полисахариды. Вот несколько примеров линейных регулярных полисахаридов (в квадратных скобках – фрагменты, отвечающие так называемым повторяющимся звеньям) (см. с. 27).
Целлюлоза построена из остатков моносахаридов одного типа – из остатков глюкопиранозы. Все гликозидные связи имеют -конфигурацию и соединяют гликозидный центр одного остатка с кислородным атомом при С-4 следующего (такие связи сокращенно обозначают -14). Амилоза устроена аналогично, но все гликозидные связи имеют противоположную конфигурацию (-). В гиалуроновой кислота (одним из наиболее распространенных полисахаридов соединительной ткани) в цепи чередуются остатки двух разных моносахаридов – D-глюкуроновой кислоты и N-ацетил-D-глюкозамина – со связями -13 и -14 соответственно. В агарозе, главном гелеобразующем компоненте агара, также чередуются остатки двух моносахаридов: -D-галактопиранозы и 3,6-ангидро--L-галактопиранозы.
Все четыре рассмотренных полисахарида имеют неразветвленную углеродную цепь и называются в связи с этим неразветвленными, или линейными. Замечательная особенность их структур – высокая регулярность. Это значит, что один сравнительно небольшой фрагмент структуры

многократно повторяется на всем протяжении цепи, причем других структурных элементов в полисахариде не содержится. Такой фрагмент называют повторяющимся звеном. Так, например, повторяющееся звено целлюлозы – 14-связанный остаток -D-глюкопиранозы, амилозы – 14-связанный остаток -D-глюкопиранозы, гиалуроновой кислоты и агарозы – соответствующие дисахаридные остатки.
Понятие повторяющегося звена, даже для таких простейших структур, как целлюлоза, амилоза, гиалуроновая кислота или агароза, не так примитивно, как может показаться на первый взгляд. Можно, конечно, отнестись к нему просто как к удобной форме сжатой записи, отражающей основные черты ковалентной структуры цепи, так:

Подобная запись не только описывает структуру, но и является прямым выводом из результатов химического анализа этих структур. Например, можно осуществить такое расщепление гиалуроновой кислоты и агарозы, при котором практически единственными продуктами будут дисахариды 33 и 34 – гиалобиоуроновая кислота и агаробиоза соответственно, из чего следует, что именно они являются «мономерами», из которых построены эти полимеры.

Более глубокий анализ структур этих полисахаридов может, однако, привести к другим выводам.
Для целлюлозы и амилозы хорошо известна характерная конформация цепей, т.е. то, как макромолекула организована в пространстве. Для целлюлозы это прямой стержень, в котором каждое следующее звено повернуто на 180 по отношению к предыдущему, как показано в формуле 35.

Такая структура действительно строго регулярна и периодична, т.е. сдвиг определенного участка цепи вдоль ее оси приводит к точному наложению на следующий участок – подобно тому, как это имеет место в кристалле. В этом смысле молекула целлюлозы – одномерный кристалл. Из формулы 35 легко видеть, что такой минимальный участок (шаг цепи) – это не моносахаридный, а дисахаридный остаток. Поэтому с точки зрения конформации цепи повторяющимся звеном в целлюлозе является не остаток глюкозы, а остаток дисахарида целлобиозы.
С амилозой дело обстоит сложнее. Ее молекула – спираль, на одном витке которой помещается точно шесть остатков глюкозы. Как любая правильная спираль, эта система повторяет сама себя, если ее сдвинуть вдоль оси на длину одного витка. В этом смысле повторяющееся звено амилозы представляет собой отрезок цепи из шести моносахаридных остатков, т.е. остаток гексасахарида мальтогексаозы.
Применительно к гиалуроновой кислоте и агарозе дисахаридные фрагменты также не отражают строения конформационных повторяющихся звеньев этих полисахаридов. Однако на этом примере нам хотелось бы указать еще один аспект понятия повторяющегося звена. Дисахариды 33 и 34, как уже говорилось, являются продуктами частичного расщепления цепей химическими методами. Поэтому естественно приписать этим полисахаридам структуру из повторяющихся звеньев именно этих дисахаридов. Поскольку к такой структуре
приводит логика химического исследования, соответствующий фрагмент принято называть «химическим» повторяющимся звеном.
Точно такую же цепь можно, однако, построить иначе, взяв за основу структуру изомерных дисахаридов 36 и 37 (они получаются при сдвиге вдоль цепи не на два, а на одно моносахаридное звено)*.

Многие полисахариды синтезируются клеткой по такой схеме: сначала происходит синтез олигосахарида, а затем его поликонденсация, сшивание в длинные цепи. Такой олигосахарид в биологическом смысле, т.е. с точки зрения путей биосинтеза этого полисахарида, и является истинным мономером полисахаридной цепи. Поэтому такой фрагмент называют «биологическим» повторяющимся звеном. И оно совсем необязательно совпадает с химическим повторяющимся звеном.
Можно, наконец, рассмотреть и еще один – также биологический – аспект понятия о повторяющемся звене, связанный с взаимодействием готовой полисахаридной цепи с другими макромолекулами в живых системах. Речь в данном случае идет о том, каков минимальный фрагмент цепи, воспринимаемый другими молекулами или системами (назовем их рецепторами) как характерный признак данного полисахарида. Сюда относится широкий круг феноменов, таких, как иммунные реакции организма, сортировка макромолекул в клетке и в организме, преодоление клеточных барьеров, метаболизм полисахаридов и т.д.
Рассмотрим лишь один наиболее простой пример: ферментативный гидролиз полисахаридов. Распространенный фермент животных организмов (лизоцим) специфически расщепляет гликозидные связи -14-связанных
остатков N-ацетил-D-глюкозамина в полисахаридных цепях. В частности, он легко катализирует гидролиз полисахаридных цепей хитина*:

Для того, чтобы фермент мог нормально работать, его рецептору нужно одновременно «чувствовать» участок цепи из шести остатков глюкозамина: тогда он способен выполнять свою функцию – расщеплять четвертую гликозидную связь в этой последовательности. Если же регулярная цепь содержит меньше, чем шесть остатков, или они связаны иначе, чем в хитине, фермент не работает**. Таким образом, «с точки зрения лизоцима», повторяющееся звено в хитине – гексасахаридный фрагмент.
Полисахариды, о которых мы говорили выше, относятся к числу простейших полисахаридных структур. Даже неразветвленные полисахариды, построенные из остатков моносахарида одного типа, могут иметь гораздо более сложное строение. Так, например, глюкан овса содержит сопоставимые количества остатков -D-глюкопиранозы, связанных 13- и 14-связями. При этом, в отличие, например, от агарозы или гиалуроновой кислоты, эти связи не чередуются правильным образом и не образуют сколько-нибудь значительных блоков из однотипных связей. Поэтому чередование двух типов связей в полисахаридной цепи приходится в данном случае характеризовать как хаотическое. Этим утверждением можно было бы и ограничиться. Мы, однако, пока не знаем, является ли хаотичность истинной или кажущейся. В самом деле, здесь может быть (хотя отнюдь не обязательно должна
быть) упорядоченность высшего порядка, которую мы пока не в состоянии уловить при помощи существующих (относительно грубых) методов исследования. Это можно пояснить, прибегнув к такой аналогии.
Статистический анализ страницы текста показал бы более или менее случайное распределение в нем всех букв алфавита, не обнаружил бы ни правильного чередования (например, каждая пятая буква – «а»), ни блочного строения (нет более или менее длинных последовательностей одинаковых букв). Между тем буквы в тексте высоко организованы по крайней мере на трех уровнях: они сгруппированы в осмысленные слова, слова объединены в грамматически правильные фразы, а последовательность фраз логически организована в информативный текст.
Таким образом, мы видим уже два принципа построения полисахаридных цепей: правильное чередование (регулярность) и хаотическое расположение фрагментов (снова подчеркнем: хаотическое с точки зрения сегодняшних знаний). Возможен, кроме того, и блочный принцип. Так, например, устроена альгиновая кислота – полисахарид бурых водорослей (кстати, имеющий большое практическое значение как гелеобразователь). В ее линейную цепь входят остатки -D-маннуроновой кислоты (38) и -L-гулуроновой кислоты, соединенные 14-связями.

Структурный анализ этого полисахарида показывает, что в его цепи имеются участки трех типов: более или менее длинные последовательности из мономеров одного типа, аналогичные последовательности мономеров второго типа, и участки, где остатки маннуроновой и гулуроновой кислот чередуются более или менее хаотически. Схематически такую структуру можно изобразить так:
…А-А-А-А-А-А-А-А-А-А-А-Б-А-Б-Б-А-А-
-Б-А-Б-Б-А-Б-Б-Б-Б-Б-Б-Б-Б-Б…
Наконец, сравнительно недавно было установлено, что некоторые полисахаридные цепи могут быть одновременно
менно и нерегулярными, и регулярными, не нарушая при этом незыблемый принцип логики – закон исключительного третьего.
Возьмем один из полисахаридов красных водорослей – порфиран. Он построен из чередующихся остатков D- и L-галактопиранозы (и в этом смысле подобен агарозе). Однако часть остатков D-галактозы превращена в метиловый эфир (по положению 6), а остатки L-галактозы входят в полисахарид частично в виде эфиров серной кислоты по положению 6, а частично в виде 3,6-ангидропроизводного, как в агарозе. Вариации каждого типа остатков распределены вдоль цепи хаотически, поэтому в целом цепь весьма нерегулярна. Однако, если порфиран обработать щелочью, то в остатках галактозы, этерифицированных серной кислотой, происходит замыкание 3,6-ангидроциклов. В результате все остатки L-галактозы становятся одинаковыми: нерегулярность по этим остаткам исчезает.
Дальше можно все гидроксильные группы полисахарида превратить в метиловые эфиры (это делается при помощи метилирования – весьма важной в химии полисахаридов реакции, к рассмотрению которой мы еще вернемся). При этом унифицируется структура всех остатков D-галактозы. Получается производное полисахарида, содержащее совершенно правильное чередование метилированных остатков D-галактопиранозы и 3,6-ангидро-L-галактопиранозы (полисахарид становится регулярным).
Весьма важно, что метилирование заведомо регулярного полисахарида (агарозы) приводит к точно такому же (идентичному) метиловому эфиру, который получается описанным путем из порфирана (см. схему, с.34).
Такая «регулярность-нерегулярность» была обнаружена английским ученым Рисом и названа им «замаскированной регулярностью» или «замаскированной повторяющейся структурой». В последнее время накапливается ряд данных, указывающих на то, что такая замаскированная регулярность – довольно распространенный принцип построения многих линейных полисахаридных цепей. Суть этого принципа не сводится только к тому, что нерегулярности могут быть (фактически или только в принципе) устранены с помощью той или иной обработки. Дело здесь значительно глубже. Можно полагать, что многие типы полисахаридов имеют достаточно регулярный

скелет цепи, в которой некоторые звенья варьируют по типу или (и) конфигурации отдельных заместителей, что сравнительно мало отражается на геометрии макромолекулы в целом. А иногда, наоборот, такие вариации вносят в регулярную структуру определенные, биологически осмысленные нарушения, вызывающие, например, изломы в правильных спиралях. Подробнее об этом мы расскажем ниже.
До сих пор мы рассматривали только линейные полисахариды и видели, что даже для простейших биополимеров этого класса, построенных из остатков одного-двух моносахаридов, возможны весьма значительные вариации типов структур, не говоря уже о бесчисленных вариациях конкретных структур внутри каждого типа. Системы, однако, резко усложняются, а возможности вариаций практически безгранично возрастают, если мы еще учтем существование разветвлений. Геометрия разветвленных полисахаридов может быть схематически типизирована следующим образом.
Простейшие разветвленные системы содержат одну длинную линейную цепь, к которой присоединены разветвления в виде одиночных моносахаридных остатков или в крайнем случае в виде коротких олигосахаридов. Так устроен, например, ксилан, выделенный из березы. К регулярной цепи из -14-связанных остатков D-ксилопиранозы присоединены единичные остатки 4-О-метил-D-глюкуроновой кислоты, в среднем один на каждые десять ксилозных звеньев. Такие системы иногда называют «гребнеобразными полисахаридами».

Следующий шаг на пути усложнения структур – полимерный характер боковых цепей, т.е. случай, когда боковые цепи сами являются остатками более или менее высокомолекулярных полисахаридов. Простейшим примером
может служить один из полисахаридов бурых водорослей – так называемый растворимый ламинарин. Его главная цепь построена из -13-связанных остатков D-глюкопиранозы, некоторые из которых несут разветвления в положении 6, а сами разветвления представляют собой тоже регулярные полисахаридные цепи, структурно вполне аналогичные главной. Такую молекулу уже трудно изобразить на бумаге достаточно подробно. Поэтому мы здесь прибегнем лишь к схематичному изображению, в котором полисахаридные цепи символизируются стрелками:

Боковые полисахаридные цепи, в свою очередь, могут быть разветвлены, а полисахариды, присоединенные к этим боковым цепям, также могут нести разветвления и т.д. Так строятся древовидные структуры высокоразветвленных полисахаридов.
Для иллюстрации рассмотрим строение одного из простейших представителей такого класса – амилопектина, который вместе с амилазой составляет крахмал. Аналогично амилопектину устроен животный крахмал (гликоген). Все цепи этих полисахаридов – и основная, и боковые, и разветвления в разветвлениях и т.д. построены однотипно и состоят из -14-связанных остатков D-глюкопиранозы. Все узлы разветвлений – точки ветвления – построены так же единообразно: боковые цепи присоединены к другой цепи гликозидной связью в положение 6 остатка глюкозы (см. схему, с.37).
И, наконец, последний структурный тип полисахаридов можно было бы назвать ультраразветвленным. Так устроен галактан одного из видов улиток. К остатку галактозы присоединено два галактозных остатка в положениях 3 и 6. Каждый из этих остатков, в свою очередь, несет по два других галактозных остатка, также присоединенных в положения 3 и 6, к которым аналогичным образом присоединены еще по два галактозных остатка, и т.д. Таким образом весь полисахарид (а он весьма высокомолекулярен) состоит из сплошных разветвлений.

Каждый моносахаридный остаток, за исключением концевых, является узлом ветвления, а понятие главной цепи теряет смысл (так как любую из большого числа цепей, которые можно выделить в структуре такого полисахарида, можно формально считать главной).
Строение такого галактана представлено на схеме (кружок со стрелкой символизирует остаток галактопиранозы, а его острый конец – гликозидный центр).

Следует сказать, что между четырьмя названными крайними типами может существовать бесчисленное множество промежуточных структур, что структуры узлов ветвления и полисахаридных цепей внутри одной полисахаридной молекулы вовсе не обязательно одинаковы и что полисахаридные молекулы могут быть построены не из одного, а из двух, трех, четырех, пяти, шести, семи и даже восьми типов моносахаридов. (Подчеркнем, что мы разбираем не просто теоретические возможности, а структурные особенности, встречающиеся в реальных полисахаридах). Все
это создает гигантские, истинно неисчерпаемые возможности вариаций полисахаридных структур и их пространственной организации, далеко превосходящие возможное разнообразие структур каких-либо других типов макромолекул живых систем (что можно показать строго математически). А мы еще ничего не сказали о структурных вариациях внутри каждого конкретного полисахарида. Но это требует специальной главы.
Микрогетерогенность
Что такое «чистое вещество», «индивидуальное вещество», «гомогенное вещество»? По классическому определению (если отвлечься от неизбежного количества присутствия большего или меньшего количества примесей), это вещество, все молекулы которого одинаковы по структуре. Подобное определение, казалось бы, не должно вызывать ни сомнений, ни двусмысленных толкований. И так оно и есть, пока речь идет о низкомолекулярных веществах или даже о многих сравнительно высокомолекулярных. Однако уже на примере глюкозы видно, что дело тут может оказаться не таким простым.
Действительно, если речь идет о кристаллической -D-глюкопиранозе, трудно усомниться в том, что она по всем меркам подходит под определение «индивидуальное вещество». Однако стоит только растворить эту самую глюкозу в воде, как начинается мутаротация, в результате которой мы получим раствор четырех циклических форм моносахарида. Можно ли говорить о нем, как о растворе индивидуального вещества? И да, и нет. Но, может быть, дело в том, что оно находится именно в растворе, где есть еще один компонент – растворитель?
Упарим раствор, отогнав воду в вакууме. В остатке мы получим сироп, содержащий все четыре циклические формы. Индивидуально ли такое вещество? По-видимому, нет, так как в нем присутствуют молекулы четырех структурно различных типов – четырех изомеров. При стоянии этот сироп самопроизвольно закристаллизовался, мы опять получили индивидуальную -D-глюкопиранозу. Как же так: из смеси четырех веществ, не прибегая к химическим или физическим воздействиям, мы снова получили индивидуальное вещество? Видно, с понятием индивидуальности и в самом деле не все обстоит так просто, как кажется.
Возьмем синтетический полимер, например полиэтилен. Можно получить полиэтилен высокой степени чистоты. Индивидуален ли такой полимер? Да, в том смысле, что все его молекулы устроены одинаково: это линейные цепи из большого числа звеньев –CH2-CH2-. И нет, в том смысле, что молекулы в образце полиэтилена различаются по молекулярной массе. Эти различия могут быть велики или малы (в зависимости от молекулярно-массового распределения); но в синтетических полимерах они есть всегда, так как рост каждой отдельной цепи при их синтезе подчиняется закону случая. Таким образом, в образце полимера не только не «все молекулы одинаковы по структуре», но в нем множество различающихся по структуре молекул.
Правда, небольшие вариации молекулярной массы высокомолекулярного соединения при неизменности повторяющейся структуры – это, казалось бы, нечто сравнительно мало существенное. Трудно ведь допустить, чтобы полиэтилен с молекулярной массой 100000 сильно отличался от полиэтилена с молекулярной массой 99500 или тем более от смеси двух полиэтиленов с молекулярными массами 99500 и 100500. Так что применительно к полимерам понятие «индивидуальное вещество» приходится трактовать расширенно.
Но то синтетические полимеры. Часть биополимеров синтезируется в клетке отнюдь не по закону случая. Наиболее известный пример – белки. Сборка их полипептидных цепей происходит на рибонуклеиновой матрице, вследствие чего положение каждой аминокислоты строго детерминировано. Иначе быть не может – ошибка в положении даже одной аминокислоты – уже ЧП, как правило, с тяжелыми и нередко летальными последствиями для клетки. Поэтому белки могут быть получены в истинно индивидуальном состоянии (в том смысле, в котором это понятие применяют для низкомолекулярных веществ). Биосинтез полисахаридов протекает по совершенно иной схеме: здесь нет матрицирования, структура и размер молекул управляются иными механизмами. Хотя в большинстве случаев мы мало знаем об этих механизмах, нам известен результат их функционирования. А он принципиально отличен от результата биосинтеза белков.
Все изученные к настоящему времени полисахариды отличаются так называемой микрогетерогенностью. Это
значит, что в любом образце индивидуального (очищенного всем доступными современной науке методами) полисахарида некоторые количественные параметры, при помощи которых можно описать его структуру, варьируют в некоторых пределах. Чаще всего варьирует молекулярная масса, число разветвлений на макромолекулу, длина боковых цепей, соотношение моносахаридных остатков (если полисахарид не регулярен), степень замещения неуглеводными остатками (типа эфиров серной кислоты или метиловых эфиров). Поэтому находимые экспериментально структурные характеристики такого типа почти всегда означают результат усреднения по всем имеющимся в изученном образце молекулам полисахарида. Так, например, если анализ дает для полисахарида молекулярную массу 100000, это означает, что в образце есть молекулы с массой и 95000, и 97000, и 105000 и т.д. (разумеется эти вариации не непрерывны: «квантом» молекулярной массы в данном случае является одно моносахаридное звено). Точно так же, если установлено, что в среднем полисахарид имеет 100 разветвлений, в нем можно обнаружить молекулы и с 90, и с 91, и с 92 и т.д. разветвлениями. Истинная картина распределения этих параметров почти никогда не бывает известна (из-за исключительно больших экспериментальных трудностей). Совокупность имеющихся данных, однако, создает впечатление, что структурные вариации в пределах индивидуального полисахарида подчиняются лишь закону случая. Подчеркнем: речь идет лишь о некоторых структурных параметрах, а отнюдь не обо всех.
Интересно оценить количественно, каким может быть число структурных вариантов индивидуального полисахарида.
Рассмотрим гипотетический разветвленный полисахарид, построенный из двух типов мономерных остатков (А и Б) с такой структурой:


Примем условно, что у всех его молекул длина главной цепи одинакова (240 остатков), что положение разветвлений строго фиксировано (у каждого третьего), и посмотрим, что дадут вариации только одного параметра – длины боковых цепей. Наложим и на этот параметр жесткие ограничения. Пусть любая из боковых цепей может содержать либо 9, либо 10 остатков Б; причем появление цепи из 9 или 10 остатков в любом месте равновероятно. Таких цепей на молекулу, как ясно из принятых характеристик – 80. Тогда число возможных структур для полисахарида равно 2801,2*1024, т.е. вдвое больше, чем содержится молекул в моле вещества. Это значит, что в достаточно малом образце полисахарида может не найтись двух одинаковых молекул: все молекулы будут различаться по структуре*!
Этот вывод заметно отличается от того определения индивидуального вещества, которое мы давали вначале. И тем не менее полисахарид с такими характеристиками любой специалист по химии углеводов счел бы индивидуальным веществом, высокоочищенным, гомогенным. Заметим еще, что в нашем расчете мы не учли возможности вариации других структурных параметров, что в реальных полисахаридах число разветвлений может быть и 100, и 250 и более и что на самом деле вариации в длине
полисахаридных цепей (как основной, так и боковых) могут быть гораздо шире, чем плюс-минус одно звено.
Итак, что же все-таки это такое – индивидуальный полисахарид? Может показаться, что полисахариды вообще построены «как попало» и что говорить об их структуре (в классическом значении этого слова) бессмысленно. Но это далеко не так. Отнюдь не любые структурные единицы полисахарида варьируют, размываются микрогетерогенностью. Среди них есть и консервативные, строго фиксированные. Трудность состоит, однако, в том, что комбинация консервативных и вариабельных признаков и степень вариабельности вариаблельных индивидуальны для каждого полисахарида (постольку, поскольку об этом можно судить сейчас, учитывая малую изученность микрогетерогенности, как явления). Поэтому, приступая к изучению структуры нового полисахарида, мы заранее не знаем, какие его характеристики окажутся усредненными величинами, а какие – строго детерминированными. Можно только полагать, что и консервативность, и вариабельность тех или иных характеристик строго подчинены выполнению полисахаридом его биологической функции, т.е. биологически оправданы. Вот простой пример.
Главная функция целлюлозы в растительной клетке – быть структурирующим материалом клеточной стенки. Последняя устроена весьма сложно, но приближенно может быть уподоблена армированному материалу типа стеклопластика или железобетона, в котором длинные пучки нитевидных молекул целлюлозы вплавлены в менее упорядоченный материал. Основой такой конструкции являются микрофибриллы – пачки длинных молекул. Для упаковки микрофибрилл молекула целлюлозы должна иметь вид длинного жесткого стержня, каким она в действительности и является.
Даже значительные вариации молекулярной массы целлюлозы не помешают ее молекулам образовывать микрофибриллы. Однако стоит только изменить конфигурацию одной единственной гликозидной связи на макромолекулу (- вместо -), как в жестком стержне появится излом, микрофибриллы не смогут упаковаться, целлюлоза полностью утратит способность выполнять свою главную биологическую функцию. И для этого достаточно, чтобы в биосинтезе целлюлозы была допущена одна ошибка на тысячи правильно построенных гликозидных связей. Естественный
отбор таких ошибок не прощает, и поэтому в этом пункте растительная клетка не ошибается никогда.
Приведенный пример характерен, так как обычно в полисахаридах именно конфигурация гликозидных связей оказывается наиболее консервативным, а молекулярная масса – наиболее вариабельным параметром структуры. Однако подчеркнем еще раз: в каждом типе полисахаридов могут быть свои консервативные и вариабельные элементы. Вопрос в том, что именно нужно для биологической функции. Но вот этого-то мы чаще всего и не знаем, и в конечном итоге именно для выяснения этого вопроса и работают исследователи структуры полисахаридов.
Смешанные биополимеры
Давно уже известны четыре класса полимеров живых систем – биополимеров. Это белки, нуклеиновые кислоты, полисахариды и липиды. Четыре, так сказать, «кита».
Как обстоит дело с такими «китами» в естественных науках? Чаще всего так. Сначала – хаотическое нагромождение объектов исследования. Приходит Наблюдатель. Он просто описывает как можно точнее и подробнее отдельные объекты. Мы узнаем много нового, но хаос накопленных фактов остается первозданным. Затем является Систематик. Он группирует факты, объединяет однородные или сходные в классы, типы и т.д., создает некоторую систему поиска – словом, раскладывает все по своим полочкам. На этом этапе обычно и появляются те самые «киты». Затем приходят другие Наблюдатели (чаще всего во множественном числе). Эти говорят: «Позвольте! А вот это не укладывается в вашу систематику, а здесь явно промежуточный тип, а это вообще вне известной серии фактов!». Тогда Систематику (или его последователям) приходится вводить подклассы, подтипы, новые классы и т.п. Наконец, приходит Исследователь и устанавливает, что классы, типы и т.д. – все это хорошо для школьных учебников, а реальные объекты образуют почти непрерывные переходы от одного типа к другому, а сами типы (или классы) суть только схематические описания некоторых крайних, часто нетипичных случаев.
Нуклеиновые кислоты стоят несколько особняком; но для белков, полисахаридов и липидов ситуация сейчас явно близка к той, к которой приходит наш Исследователь. Во многих полисахаридах при ближайшем рассмотрении
можно обнаружить большой или маленький ковалентно привязанный пептидный фрагмент. А очень многие классические белки, как выясняется при подробном анализе, несут на поверхности своих глобул короткие олигосахаридные цепи. Однако первые продолжают по инерции называть просто полисахаридами, а вторые – просто белками.
Между этими крайностями имеются всевозможные системы, содержащие больше или меньше белковой компоненты и больше или меньше полисахаридной. Такие соединения называют гликопротеинами, а также протеогликанами (гликаны – общее название полисахаридов). Точного определения у этих терминов нет, и те или иные классы биополимеров называют либо гликопротеинами, либо протеогликанами, руководствуясь при этом скорее традицией, чем какими-либо четкими критериями. Аналогично обстоит дело с ковалентно связанными углеводами и липидами: их называют гликолипидами, а также липополисахаридами. Весь же тип природных высокомолекулярных соединений, включающих ковалентно связанные фрагменты полимеров более чем одного класса, называют смешанными биополимерами, а в последнее время – гликоконъюгатами.
Стурктуры смешанных биополимеров чрезвычайно сложны, а их подробное изучение в сущности лишь только начинается. В отличие от полисахаридов систематически описать и классифицировать типы структур смешанных биополимеров весьма затруднительно прежде всего из-за ограниченного количества надежно и полно расшифрованных структур. Укажем лишь, что связь олиго- или полисахаридной компоненты с пептидной, белковой или липидной осуществляется обычно при помощи гликозидной связи: либо по гидроксильным группам (например, в остатках оксиаминокислот пептидной цепи), либо по амидной группе амидов двухосновных аминокислот. Возможна также фосфодиэфирная связь, подобная той, которая лежит в основе строения нуклеиновых кислот.
Для иллюстрации схематически опишем структуры двух таких биополимеров: гликопротеина и липополисахарида. Биополимеры, определяющие групповую принадлежность ткани, представляют собой высокомолекулярные (молекулярная масса до 1 млн.) гликопротеины, содержащие около 80-85% углеводной компоненты и около 15-20% пептидной. В основе строения их молекул лежит
длинная полипептидная цепь с весьма высоким (по сравнению с большинством белков) содержанием оксиаминокислот – серина и треонина.
К гидроксильным группам части этих аминокислотных остатков присоединены гликозидными связями углеводные цепи, общее число которых достигает нескольких сотен. Эти цепи содержат 15-20 моносахаридных остатков каждая, имеют высокоразветвленную структуру и построены из остатков N-ацетил-D-глюкозамина, N-ацетил-D-галактозамина, D-галактозы, L-фукозы, и в части случаев N-ацетил-D-нейраминовой кислоты. В биологическом отношении максимально функциональны (непосредственно ответственны за групповую специфичность) концевые (внешние) участки моносахаридных остатков (так называемые детерминанты). Именно здесь расположены все остатки L-фукозы и N-ацетил-D-нейраминовой кислоты (см. схему).


Жирные линии на схеме символизируют полипептидную цепь, остальные линии – полисахаридные цепи: А-общая схема, Б-один из узлов связи полисахаридной и пептидной цепей.
Второй пример – липополисахариды грамотрицательных бактерий, располагающиеся на внешней поверхности бактериальной клетки. На контакт именно с этими биополимерами животный организм-хозяин дает иммунный ответ – начинает вырабатывать антитела. Иными словами, липополисахариды такого типа – это высокоактивные и высокоспецифичные антигены, структура которых строго индивидуальна для каждого вида микроорганизмов. Однако схема построения этих структур имеет весьма общий характер для больших классов микроорганизмов. Вот так приблизительно они построены.
Макромолекула в целом линейна и состоит из трех последовательно связанных крупных блоков, представленных на схеме:

Липид А – главным образом дисахарид, состоящий из двух остатков D-глюкозамина, к одному из гидроксилов которого присоединен кор, а остальные гидроксилы и обе аминогруппы ацилированы высшими жирными кислотами, что и придает фрагменту высоко гидрофобный, липидный характер. Благодаря этому липидный фрагмент липополисахарида погружен (можно было бы сказать, растворен или, еще точнее, вплавлен) в липидную мембрану клетки, что и обеспечивает прочную связь всей молекулы, полисахаридная и, следовательно, высоко гидрофильная, обращена в водную среду, окружающую бактериальную клетку.
Кор представляет собой линейный или слаборазветвленный (по типу гребнеобразного) полисахарид, содержащий остатки довольно необычных моносахаридов – 2-кето-3-дезоксиоктоновых кислот (общая формула 40). Наконец, О-антигенная цепь – это обычно регулярный полисахарид, построенный из повторяющихся три-гексасахаридных (часто разветвленных) звеньев; причем в их состав нередко входят весьма экзотические моносахариды.

Липидная часть и кор сравнительно мало меняются при переходе от одних микроорганизмов к другим в пределах одного класса, тогда как O-антигенная цепь широко варьирует и строго индивидуальна для каждого вида. Как ясно из сказанного, именно эта часть молекулы составляет самый внешний слой бактериальной клетки, с которым непосредственно входит в контакт организм-хозяин при инфекции.
Глава 2
^ КАК УСТАНАВЛИВАЮТ СТРУКТУРЫ
ОБЩИЙ ВЗГЛЯД
В руках у исследователя неизвестный полисахарид (не будем говорить о том, как он был выделен и очищен – это само по себе большая и сложная тема). Белый порошок, растворим в воде, нерастворим в обычных органических растворителях. Вот, собственно, и все, что о нем пока известно. А что нужно узнать? Структуру. Иными словами, «расставить по местам» те десятки тысяч атомов, из которых состоят молекулы; связать их одним единственным способом ковалентными связями. В последней фразе задача сформулирована вполне точно, однако решить такую задачу «в лоб» современной науке не под силу. Нельзя последовательно установить положение одного атома за другим, если общее их число измеряется тысячами или десятками тысяч – это потребовало бы невообразимых затрат труда и времени*. Поэтому общая стратугия структурного анализа таких сложных объектов состоит в «разборке» молекулы на более мелкие блоки, установлении структуры этих блоков (если и они сложны, то также путем предварительного расщепления на еще более мелкие фрагменты) и затем в реконструкции (мысленной) исходной системы. К счастью (и это далеко не случайное везение, а глубоко обоснованный биологический принцип), все биополимеры построены именно по блочному типу и по самой своей природе сравнительно легко допускают такую разборку. Это значит, что в их молекулах чередуются сравнительно легко расщепляемые связи и участки из значительно более прочных связей. Такие участки и есть те самые блоки,
на которые естественно расщепляются макромолекулы биополимеров.
В полисахаридах легко расщепляемые связи – гликозидные. Разрыв всех гликозидных связей в полисахариде приводит к образованию моносахаридов, из остатков которых был построен полисахарид. Разрыв части гликозидных связей ведет к получению более крупных фрагментов, например олигосахаридов. После того, как установлена структура единичных блоков – моносахаридов (что является относительно простой задачей), структурный анализ исходной системы состоит уже в расстановке не десятков тысяч или тысяч атомов, а немногих тысяч или немногих сотен моносахаридных остатков по определенным местам – задача, все еще весьма сложная, но уже разрешимая. Для ее решения надо узнать, каким путем (из множества возможных) эти мономеры были соединены в полисахаридной молекулы, выяснить размеры циклов моносахаридных остатков (пиранозные или фуранозные) в исходной цепи и установить конфигурации их гликозидных связей.
Задача установления строения смешанных биополимеров гораздо сложнее. Она включает установление строения полисахаридных цепей как одну из подчиненных задач. А в целом надо еще узнать природу и структуру неуглеводной части молекулы, способ присоединения одной части к другой и места присоединения. Так, для установления полной структуры рассмотренных выше группоспецифичных гликопротеинов необходимо узнать структуру полисахаридных цепей, способ, с помощью которого они связаны с полипептидной цепью, структуру узлов связи, структуру полипептидной цепи и, наконец, места присоединения в этой цепи. Это весьма значительная по объему работа. Не случайно после двух десятилетий интенсивных усилий нескольких крупных лабораторий мира полная структура этих биополимеров все еще не установлена (хотя ее основные черты и многие детали уже известны).
Структурные методы в химии углеводов развивались и совершенствовались на протяжении многих десятилетий и сейчас составляют богатый арсенал. В этой части книги мы остановимся на наиболее важных, принципиальных методах, которые реально применяются в самых передовых современных исследованиях и не будем останавливаться на исторических аспектах и на методах и принципах,
уходящих в прошлое, хотя все еще и находящих применение. Мы сделаем лишь одно отступление от этого принципа изложения, но предмет, о котором при этом расскажем, того заслуживает.
Ограничимся разбором путей установления структуры полисахаридов, хотя они далеко не исчерпывают структурные задачи, возникающие в химии углеводов. Для этого есть две причины. Во-первых, полисахариды (включая сюда смешанные биополимеры) представляют собой наиболее важный объект углеводной химии. Во-вторых, установление строения полисахаридов включает основные типы структурных задач, в том числе установление строения моно- и олигосахаридов, а применяемые для этой цели методы являются наиболее общими и употребительными инструментами химии сахаров в целом.
Мономерный анализ
В химии полимеров мономерным анализом называют выяснение вопроса о том, из каких мономерных остатков построен изучаемый полимер. В химии полисахаридов мономерный анализ должен прежде всего установить, из каких моносахаридов построен полисахарид. Для этого нужно расщепить его до моносахаридов, т.е. разорвать все гликозидные связи. Важнейшая реакция, с помощью которой такой результат может быть достигнут,- это кислотный гидролиз гликозидных связей, представленный на примере гидролиза фрагмента -13-связанного D-глюкана.

Скорости гидролиза гликозидных связей варьируют достаточно широко в зависимости от природы гликозидного остатка, конфигурации гликозидной связи и особенно сильно – от размера цикла. Для пиранозных звеньев обычных альдоз примерные условия полного гидролиза: 1н. Минеральная кислота, 100С, несколько часов. Для фуранозных звеньев: 0,01н. минеральная кислота, 100С, 1-2 часа.
После гидролиза можно выделить образовавшиеся моносахариды, установить их строение и таким образом узнать, каков моносахаридный состав полисахарида. Конечно, знание моносахаридного состава не позволяет сделать никаких заключений о последовательности моносахаридных остатков в цепи, о регулярности или нерегулярности ее структуры*, о наличии или отсутствии разветвлений – словом, ни об одной характеристике макромолекулы как целого. В этом смысле его можно уподобить данным элементного анализа низкомолекулярного вещества. Более того, моносахаридный состав полисахарида умалчивает даже о многих особенностях строения самых моносахаридных остатков в полисахаридной цепи.
В самом деле, гидролиз осуществляют в сильнокислых средах. Поэтому образовавшиеся моносахариды мгновенно (или во всяком случае неизмеримо быстрее, чем идет гидролиз) достигают мутаротационного равновесия. Таким образом, каков бы ни был размер цикла моносахаридного остатка в полисахаридной цепи и какова бы ни была конфигурация его гликозидной связи, образующийся моносахарид будет получен в одной и той же форме – равновесной смеси, состав которой определяется только условиями среды, а отнюдь не структурой соответствующего звена в полисахаридной цепи. Иными словами, вся информация о размере цикла и о конфигурации гликозидной связи будет необратимо потеряна в результате гидролиза.
Далее. Гидролиз глюкана, который мы привели выше, дает D-глюкозу. Тот же результат получился бы и при гидролизе целлюлозы, и при гидролизе амилозы, глюкана овса или вообще любого другого D-глюкана. Между тем именно мономерные звенья в этих полисахаридах различаются весьма сильно – не только конфигурацией гликозидных связей, но и местами присоединения остатков друг к другу. В этом смысле истинные мономеры названных полисахаридов – не D-глюкоза, а - или -D-глюкопираноза со связями 13 или 14. Но простой кислотный гидролиз не позволяет их различить. Чтобы после гидролиза не потерять информацию о положении гликозидных связей в исходном полисахариде, надо предварительно
как-то «пометить» атомы кислорода, использованные для образования гликозидной связи и для образования циклов. Непосредственно сделать это нельзя (по крайней мере современными средствами). Но можно решить почти эквивалентную обратную задачу: «пометить» все те кислородные атомы моносахаридного остатка, которые не использованы для образования гликозидных связей и циклов. Это достигается методом метилирования.
Спиртовые гидроксилы можно превратить в простые эфиры, как и всякие спирты. Простейшая возможность – метиловые эфиры. Для этого полисахарид надо обработать теми или иными метилирующими агентами (например иодистым метилом) – прометилировать. Идея метода заключается в том, что метиловые эфиры сахаров устойчивы в условиях кислотного гидролиза гликозидных связей. Поэтому после гидролиза метилового эфира полисахарида можно получить метиловые эфиры входящих в его состав моносахаридов, причем метильные группы в них окажутся в тех же самых положениях, в которых они были в соответствующих моносахаридных остатках полисахаридной цепи. Напротив, неметилированными в них будут те гидроксилы, которые были использованы для образования гликозидных связей и освободились при гидролизе. Таким образом, установив строение метилированных моносахаридов и, следовательно, положение в них метильных групп, можно выяснить, какими своими положениями эти моносахариды были связаны в исходной полисахаридной цепи. Все это можно проследить на примере метилирования растворимого ламинарина, фрагмент которого представлен на схеме (с. 53).
Метилирование полисахарида приводит к образованию его полного метилового эфира, не содержащего свободных гидроксильных групп. Последующий гидролиз дает смесь частично метилированных глюкоз (1-3).
Тетраметиловый эфир 1 не содержит свободных спиртовых гидроксилов и, следовательно, происходит из концевых остатков – тех, которые были в полисахариде только гликозильными. Поскольку в этом соединении в положении 4 имеется метильная группа, этот гидроксил не мог быть включен в цикл в исходном остатке.
Следовательно, этот остаток был не фуранозным, а пиранозным.
Триметиловый эфир 2 содержит один свободный спиртовый гидроксил в положении 3. Следовательно, эти

остатки находились внутри цепи и были привязаны к соседнему с ними гликозильному остатку (слева, при традиционной форме записи полисахаридных структур) связями 13. Наличие метильной группы при О-4 указывает на то, что эти остатки находились в полисахариде в пиранозной форме.
Диметиловый эфир 3 содержит два свободных спиртовых гидроксила. Из этого прямо следует, что к этому остатку в полисахариде было присоединено два гликозильных, т.е. что он служил местом разветвления (а значит, исходный полисахарид был разветвленный). А положение свободных гидроксилов указывает на положение их связей 13 и 16. Иными словами, становится ясно, что полисахаридная цепь построенная из 13-связанных остатков, разветвлена по положениям 6.
Таким образом, видно, что метод метилирования позволяет выполнить гораздо более детальный мономерный анализ полисахарида, установить не только природу моносахаридных остатков, из которых он построен, но и положения межмономерных связей в каждом остатке и даже тип структуры (разветвленный-неразветвленный). Следует, однако, помнить, что при всех своих достоинствах метод метилирования не есть прямой способ установить, какие атомы кислорода вовлечены в межмономерные связи и циклы. Это лишь метод, основанный на рассуждении от противного («поскольку этот гидроксил метилирован, он не был использован для образования гликозидных связей или циклов. Следовательно …»). А при таком способе могут возникать неопределенности. Мы не будем их здесь разбирать, а хотим только предупредить читателя об абсолютизации этого метода (рассуждение: «делали метилирование, значит есть структура», довольно распространено) и отослать его за подробностями к более специальной литературе.
Количественный анализ состава смеси метилированных моносахаридов, полученных из полисахарида, позволяет установить также среднуюю длину линейных участков цепи, или среднюю частоту разветвлений (по соотношению продуктов типа 2 и 3), а также оценить среднюю молекулярную массу полисахарида по соотношению продуктов типа 2 и 1 (для неразветвленных полисахаридов)*.
Мы видим, что метилирование – высоко информативный метод структурного анализа полисахаридов. Но тем не менее это всего лишь метод мономерного анализа, который в принципе, по самой сути, не может дать представления
о полной структуре полисахарида – последовательности звеньев, распределении остатков между различными участками цепей (например, в рассмотренном примере с ламинарином о распределении остатков между главной и боковой цепями), о конфигурации гликозидных связей. Здесь буквально реализуется та самая потеря исходной части связей, по поводу которой так зло иронизировал гётевский Мефистофель:
«…живой предмет желая изучить
Чтоб ясное о нем познанье получить
Ученый прежде душу изгоняет
Затем предмет на части расчленяет
И видит их, да жаль духовная их связь
Тем временем исчезла, унеслась!»*
Для восстановления утраченных характеристик структуры полисахаридов нужны принципиально другие методы, которые мы разберем в последующих главах. Но сначала надо рассказать о том, как устанавливают строение моносахаридов и их метиловых эфиров, т.е. о структурной концовке мономерного анализа.
^ УСТАНОВЛЕНИЕ СТРОЕНИЯ МОНОСАХАРИДОВ
Идентификация
Итак, осуществлен гидролиз полисахарида и получены составляющие его моносахариды или метилированные сахара. Теперь надо установить их строение. Задача эта все еще достаточно сложна и трудоемка (хотя и проще, чем установление строения самого полисахарида). Поэтому, прежде чем непосредственно браться за ее решение, следует подумать, нельзя ли установить строение …, не занимаясь установлением строения? Часто оказывается, что можно. В арсенале органической химии есть такой прием, который позволяет прийти к определенным выводам о структуре молекулы без ее последовательной экспериментальной расшифровки. Этот прием называется идентификацией вещества.
Научный потенциал, накопленный человечеством к сегодняшнему дню, состоит не только в огромных общих знаниях, могущественных методах исследования и совершенных приборах. В него входят также сведения о точных, хорошо воспроизводимых физических характеристиках гигантского числа органических соединений, в том числе моносахаридов и их производных, строение которых уже было установлено определенно и надежно. И если нам удастся доказать, что полученный из неизвестного полисахарида моносахарид тождествен или, как чаще говорят, идентичен известному моносахариду, мы тем самым установим строение этого моносахарида. Доказательство идентичности двух веществ – идентификация – есть один из важнейших во всей органической химии принципов исследования, а применяемые для этой цели методы и приемы постоянно совершенствуются и развиваются. Как же практически идентифицировать органическое соединение, в частности моносахарид?
Прежде всего можно определить его физические константы. Самые обычные и легко измеряемые из них – температура плавления и удельное вращение. После этого пора обратиться к литературе – не был ли описан ранее моносахарид с такими константами? И если окажется, что был описан, у исследователя появляется, нет,не уверенность, но только основание для предположения о том, что его моносахарид идентичен известному, и, следовательно, право предположительно приписать ему определенную структуру. Почему же только предположительно? А вот почему.
Прежде всего, точность определения этих констант и их воспроизводимость сравнительно невелики. Реально обе эти величины могут быть измерены с помощью обычных приборов с ошибкой, достигающей 1-2. Сами же величины зависят от чистоты образца, а она может быть различной у нашего исследователя и у того, кто впервые описал это вещество в литературе. Так что даже для безусловно идентичных веществ расхождение в температурах плавления и величинах удельного вращения вполне может достигать 2-3. Температуры плавления моносахаридов, например, лежат обычно в интервале примерно 50-200*. При допустимой ошибке в 3 это означает всего
около 50 различных температур плавления. Иными словами, вероятность случайного совпадения этой константы – порядка 2%. Это, конечно, недопустимо много. Не намного лучше обстоит дело с удельным вращением. Для большинства моносахаридов удельные вращенияумещаются в интервале от -100 до +100, т.е. вероятность случайного совпадения удельного вращения разных соединений опыть около 1-2%. Таким образом, даже совпадение обеих этих констант для двух моносахаридов может оказаться случайным с вероятностью в несколько сотых процента. Такая вероятность ошибочного вывода об идентичности все еще велика, для того чтобы серьезный ученый мог ею удовлетвориться*. Ко всему прочему нужно добавить, что очень многие моносахариды, а особенно метилированные сахара весьма трудно получить в кристаллическом состоянии, причем сделать это тем труднее, чем хуже очищено вещество и чем меньшим его количеством располагает исследователь. А если нет кристаллов, то нельзя и определить температуру плавления.
Остаются еще, конечно, и другие характеристики вещества: его спектры, цветные реакции, некоторые особенности химического поведения. Однако, во-первых, они обычно менее индивидуальны и характерны для данного соединения, во-вторых, далеко не для всех соединений с известной структурой описаны в литературе (в отличие от двух самых распространенных: температуры плавления и удельного вращения). Таким образом, «заочная» идентификация соединения по литературным данным – вещь мало надежная. Совсем другое дело – держатьв руках два образца: неизвестного вещества и известного, устроить им, так сказать, очную ставку. В научной литературе это называется «идентифицировать вещество путем прямого сравнения с заведомым образцом». Здесь возможности для надежной идентификации резко расширяются.
Прежде всего, существует общая закономерность: два разных вещества могут случайно иметь одинаковые
температуры плавления, но их смесь обязательно будет плавиться при другой температуре. Только смесь двух идентичных веществ (которую в сущности вообще нельзя назвать смесью, разве что смесью двух образцов) имеет точно такую же температуру плавления, что и исходные компоненты. Так что отсутствие депрессии температуры плавления – чрезвычайно простой и очень надежный метод идентификации двух веществ при прямом сравнении. Для этого, однако, нужно иметь чистое кристаллическое вещество, а это не всегда удается.
В таком случае вступает в свои права комплекс мощных аналитических методов – хроматография. Это способ анализа веществ, основанных на их физическом разделения. Например, при хроматографии на бумаге вещества двигаются по хроматограмме с током растворителя с различными скоростями, индивидуальными и характерными для данного вещества в данных условиях. Последняя оговорка весьма существенна: в разных лабораториях и в разных руках точно воспроизвести абсолютные скорости – их называют хроматографическими подвижностями – весьма и весьма трудно. Поэтому здесь не обойтись литературными данными – нужно прямое сравнение двух образцов.
Огромное достоинство хроматографических методов в том, что они позволяют работать с очень малыми количествами вещества (например, порядка микрограмма) и, что еще важнее, позволяют идентифицировать не только мало очищенные вещества, но даже вещества, присутствующие в качестве компонентов сложных смесей. Последнее особенно существенно для разбираемой нами задачи, так как, например, гидролизат полисахарида может содержать несколько разных моносахаридов. И хроматография позволяет идентифицировать их без предварительного разделения.
Конечно, и хроматографические методы могут дать осечку: подвижности разных веществ могут и случайно совпасть. Однако хроматография – это очень гибкий метод. Можно использовать набор разных условий для анализа одной и той же пары веществ,а совпадение подвижностей в нескольких различных условиях – это уже событие, вероятность которого ничтожно мала*.
Кажется, все? Проблема идентификации моносахаридов решена? Не тут-то было! В одном и очень важном для химии углеводов пункте хроматографические методы бессильны: они не позволяют отличать правое от левого. Мы можем, например, со всей надежностью идентифицировать хроматографически галактозу, но останемся в полном неведении относительно того, D- или L-галактозу мы имеем.
Значит, нужно сделать еще что-то. Тут два пути. Можно выделить моносахарид (или его производное) в индивидуальном состоянии и определить его удельное вращение. А можно воспользоваться ферментом, катализирующим ту или иную реакцию этого моносахарида – уж ферменты-то отличают правое от левого! Но ферменты – реагенты тонкие и капризные. Надежный анализ с помощью ферментативной реакции требует проверки с применением образцов заведомых моносахаридов, вводимых в ту же реакцию с темже самым препаратом фермента. И вот тогда только у исследователя появляется действительная уверенность в том, что вещество – моносахарид – идентифицировано.
Мы видели, какую большую роль при идентификации играет прямое сравнение с заведомым образцом. Спрашивается, а где его взять? Промышленность реактивов выпускает специальные наборы образцов многих природных веществ, и в частности моносахаридов (разумеется, самых обычных и распространенных). Но это минимум, который гораздо ниже «прожиточного» при развитой исследовательской работе. Поэтому каждый исследователь, а также исследовательский коллектив, стремятся создать свою собственную коллекцию образцов веществ, пополняют ее при любой возможности и берегут как зеницу ока. Поэтому, в частности, столь значительно повышается эффективность исследовательской работы в больших коллективах: многие проблемы легко решаются путем обмена образцами известных веществ. Наконец, образцы известных соединений являются предметом международного обмена и сотрудничества. Неудивительно,
что ученые часто получают письма примерно такого содержания: «Глубокоуважаемый доктор N! Не могли бы вы прислать нам несколько миллиграммов такого-то вещества для идентификации?». И в ответ летят в авиаконвертах через океаны и континенты считанное число драгоценных кристалликов. Поэтому научная статья нередко кончается словами: «Авторы глубоко признательны доктору N, любезно предоставившему заведомый образец такого-то вещества». И тут есть за что благодарить: иной раз один такой кристаллик позволяет исследователю сэкономить многие месяцы, а то и годы труда.
Историческое отступление
Мы обещали касаться только вполне современных методов исследования, и не без оснований: классику легко найти в любом учебнике*. И все-таки хочется отсупить от этого принципа и описать методы, с помощью которых были впервые выяснены конфигурации ассиметрических центров важнейших моносахаридов. Это – классическая работа Эмиля Фишера**. Изложим ее несколько упрощенно, стремясь сохранить главное – логику исследования.
Прежде всего о том, что уже было известно Фишеру и что предстояло узнать. Была известна бутлеровская структура (см. с. 8) нескольких моносахаридов, было также известно, что для некоторых из них возможны взаимные превращения путем определенных реакций и что изомерные альдозы отличаются конфигурацией ассиметричемких
центров. Установить же нужно было относительные конфигурации этих центров. Экспериментально Фишер использовал главным образом две реакции.

  1. 2014-07-19 18:44
  2. Контрольная работа
  3. Контрольная работа
  4. Контрольная работа
  5. Контрольная работа
  6. Контрольная работа
  7. Контрольная работа
  8. Контрольная работа
  9. Контрольная работа
  10. Контрольная работа
  11. Контрольная работа
  12. Контрольная работа
  13. Контрольная работа
  14. Контрольная работа
  15. Контрольная работа
  16. Контрольная работа
  17. Контрольная работа
  18. Контрольная работа
  19. Контрольная работа
  20. Контрольная работа
  21. Контрольная работа
  22. Контрольная работа
  23. Контрольная работа
  24. Контрольная работа
  25. Контрольная работа
  26. Контрольная работа
© sanaalar.ru
Образовательные документы для студентов.