.RU

Устройство соединительных тканей анатомофизиологические и функциональные соотношения движения - страница 3

Происхождение движения


Происхождение клеточного движения
Несколько молекулярных структур, собранных определенным образом, становятся “жизнью”. Однако по отдельности элементы, составляющие жизнь, являются субстанциями совершенно инертными, не живыми.
Чтобы они стали активными, необходимы механизмы, которые в состоянии производить обмен, определяющийся диффузией, активной передачей или пиноцитозом.
Активация этих механизмов обуславливается средой, в которой осуществляется обмен, обычно происходящий в жидкой среде с использованием внутри- и межклеточного давления, чтобы приобрести направление.
Клеточная динамика
Под ней понимается движение, предназначенное для жизненных функций, которые могут быть сгруппированы по двум основным категориям.
^ 1 - Специальная динамическая активность
Рассматривает активность на базе клетки, направленную на обеспечение её выживания; связана с вегетативной активностью клетки и включает: питание, метаболизм, рост и воспроизведение.
^ 2 - Активность, меняющаяся во времени
Связана с особыми свойствами и с различной специализацией разных клеток, с которыми соединена активность соматического типа, такая, например, как возбудимость.
Происхождение тканевого движения
Клетки тела организуются в ткани с определенными свойствами и функциями. Сочетание и скопление клеток с подобными характеристиками определяет образование тканей, которые могут быть распределены по четырем большим группам:
^ 1-ая - Эпителиальные и производные от них ткани
Клеточные ткани с малым количеством внутриклеточной субстанции или с ее отсутствием, как, например, эпидермис или базальная оболочка.
^ 2-ая - Ткани с функциональной жидкой субстанцией
Классический пример такого рода тканей - кровь или лимфа.
3-ая - Ткани с абсорбирующей субстанцией
Прозрачные и волокнистые слизистые оболочки, хрящи и ткани с присутствием коллагена.
^ 4-ая - Ткани, образованные из организованных клеток
Ввиду особого расположения в них клеток, организованных в волокна и пучки, эти ткани составляют главным образом мышцы, нервы и сосуды.
Разделение на эти классы происходит во время эмбриональной фазы, начиная с группы клеток, имеющих в первичном зачатке кажущиеся одинаковыми свойства, но со все более очевидным расхождением в последующем развитии.
Появление подгрупп, образовавшихся на основе тех же матриксов, следует законам функциональной морфологической дифференциации.
Органическое движение: специфическая функциональная организация
Закон функциональной морфологической дифференциации делает так, что каждая группа клеток, составляющая ткань, имеет собственную специфическую функцию и такое морфологическое свойство, по которому она сразу распознается, как по виду, так и по определенному местоположению.
Скопление клеток, составленное таким образом, будет специализироваться на одной особой функции, которую оно будет выполнять в течение всего времени своего существования. Во время репродуктивной фазы каждая новая клетка этой группы будет иметь те же самые свойства и сформирует составные кирпичики органа. Все органы во время их образования следуют этому процессу; они сразу же идентифицируются по месту, форме и цвету; каждый потом будет осуществлять функцию, соответствующую его отличительной особенности.
Для выполнения особой функции необходимо, чтобы орган в целом (как, впрочем, и каждая отдельная клетка, его составляющая) имел собственное движение, пассивно побуждаемое сопредельными структурами на осях движения, проходящих через точки фиксации, определенные подвешивающими связками. На осуществлении функции будут сказываться респираторный и сердечный “насосы”. С функциональной точки зрения каждый орган является жизненно важной частью более обширного комплекса, который обычно определяется словом аппарат.
Аппарат: следующее устройство для преобразования
Это структура, состоящая из комплекса органов, включающая органы с разными специфическими функциями, но общей конечной целью: преобразование введенного вещества в элементы напрямую усваиваемые организмом. Каждый введенный продукт питания постепенно расщепляется на менее сложные молекулярные формы с тем, чтобы получились молекулярные цепи, которые могут быть в дальнейшем преобразованы на клеточном уровне в инертные субстанции, могущие быть использованными для вегетативной жизни самой клетки.
В случае выделительных систем, устройство аппарата предусматривает обеспечение удаления всех токсичных отходов и веществ, не пригодных больше для организма.
Конечной целью жизни является консервация; чтобы достичь этой цели, необходимо все время поддерживать высокое качество жизни.
Жизнь обеспечивается равновесием - если угодно, немного шатким - которое сопровождает наше существование. Это равновесие, в упорядоченной форме, есть человек.

Человек


Каждое живое существо из любого природного царства постоянно находится в поиске стабильного положения, внутреннего равновесия, необходимого для жизни и ее эволюции.
Гомеостаз является ни чем иным как условием равновесия внутренней среды в отношении всех тех маленьких обменных процессов, которые ее характеризуют.
Это условие равновесия огромной совокупности микрокосмов, содействующих одной цели, но совершенно разными способами, и все же подчиняющихся общим законам, законам, в целом, простым, хотя часто недоступным нашему рассудку.
Совокупность этих микрокосмов организуется, чтобы создать новые объемы, все более широкие, оформленные в органы, внутренности и аппараты. Движение всё увеличивается, от микроскопического движения клеток до определяемого им органического макродвижения; однако матрикс клеточного движения внутри макрокосма сохраняется, и мы можем воспринять его с ростом способностей восприятия, так же, как дирижеру оркестра удается различить каждую ноту в контексте симфонии.
Человек - это сбалансированная равнодействующая между движением микрокосмов и макрокосмов, которые его составляют, управляемая большими механизмами контроля, подчиняющимися нервной системе; к этому надо добавить, как элемент дальнейшего объединения, способность мыслить, свойство, используемое главным образом для взаимоотношений с себе подобными.
Качество способности сообщаться с внешней средой зависит от качества и степени нашего внутреннего равновесия.

Что такое жизнь?


Жизнь организма - это чередование ритмов.
Ритм - это постоянное колебание между двумя возможностями в повторяющемся согласованном размере; это та реальность, которая обнаруживает себя с первым дыханием жизни, оживляющим клетку, и сохраняется до ее последнего дня, следуя все время вегетативным законам природы.
Клетки, ткани, органы, каждая и каждый со своей особой функцией, стимулируемой ритмическим колебанием, заданным движением наполнения и опустошения желудочков мозга, сердца и легких, обретет свою собственную равнодействующую расширения и сокращения, которая может быть воспринята благодаря определенной тренировке руки.

Средство передачи для всей совокупности тела - фасциальная система.


Соединительная ткань, делая возможной структурную непрерывность, является средством, с помощью которого физически происходит передача расширяющих и сокращающих механических сил, индуцированных естественными насосами. Ее функция сообразуется с каждым присутствующим ритмом посредством связок, устройств подвешивания, чистых фасциальных оболочек, передавая отдельным структурам, органам и внутренностям различные виды движений, повторяющиеся с каждой систолой и диастолой сердца, с каждым расширением легких, с каждым движением первичного дыхания.
Этот механизм делает возможным постоянное “перемешивание” всех жидкостей тела; благодаря ему поддерживается метаболическое равновесие между поочередным привнесением и удалением тех же самых элементов.
Любое изменение ритма предполагает замедление или застой в определенном отделе тела, требующие компенсации; нарушенное равновесие восстанавливается посредством увеличения ритма в другом отделе тела. Корректирующее ускорение может происходить одновременно с первичным замедлением или же во вторую очередь. Конечно, в этих условиях заинтересованному отделу тела необходимо производить больший объем работы, чтоб обеспечить общее равновесие и согласованность с остальным организмом, с последующим увеличением энергетических затрат. Ситуация подобного рода, сохраняющаяся долгое время, обуславливает быстрое снижение качества жизни этого определенного отдела вплоть до достижения стадии болезни; смена ритмов в состоянии подготовить благодатную почву для износа или перегрузки определенного отдела тела.
Эта концепция приложима ко всем существующим патологическим формам. Чтобы болезнь закрепилась в организме, нужно, чтобы вначале было какое-нибудь недостаточное условие в отношении жизненного ритма этого отдела, ослабляющее структуру до такой степени, что она становится уязвимой и подверженной таким метаболическим отклонениям, которые угрожают чередованию ввода и удаления веществ, или их производства и диффузии.
Синтезируя сказанное, мы можем утверждать, что жизнь - это последовательность ритмов, взаимно дополняющих друг друга и, в своей равнодействующей, производящих движение сокращения и расширения, воспринимаемое через кожные покровы.

Эластичность


Чтобы ритм был таковым, требуется изменение исходной позиции, а затем снова возврат в начальную позицию, и это с повтором во времени.
В теле нет структур, обладающих собственной эластичностью: существуют структуры, могущие быть деформированными механическим натяжением или давлением; единственное исключение составляет эластин, присутствующий в соединительной ткани, который обладает способностью растягиваться, чтобы затем снова принять исходное положение.
Не случайно, что в детский и отроческий период эластин присутствует в теле в повышенных дозах: организм постоянно меняет свою форму и его ритмы чрезвычайно изменчивы.
С течением лет количество эластина постоянно уменьшается. В возрасте, соответствующем старости, эластин тела уступает место затвердеванию (окоченению) и фиброзу: на каждом уровне тела наблюдается убывание количества эластина с последующим уменьшением общей способности тела к расширению и сокращению и, таким образом, искажение жизненных ритмов, что отражается на специфической функциональности отдельных клеточных микрокосмов и влечет последующее замедление всех жизненных функций.

Соединительная ткань


Кроме того, что в ней помещается эластин, эта ткань гарантирует механическое объединение всех аппаратов, составляющих человеческое тело. Выполняемая ею функция имеет первостепенное значение, поскольку это - основа, на которую опираются все макро- и микроструктуры со специфическими функциями.
Соединительная ткань развивается из мезенхимы. Мезенхима - это ткань среднего зародышевого листка. С последующим развитием эмбриона дифференцируются костные, связочные, волокнистые, сухожильные, фасциальные и апоневротические ткани, чтобы в результате безукоризненным образом связать каждую клеточную структуру с другими, как близлежащими, так и отдаленными.
Соединительная ткань, состоящая из тканей с крайне различной спецификацией, образует “опорное полотно” для каждого сегмента или структуры тела. По своим особенностям и функциям соединительная ткань подразделяется на плотную и рыхлую.
Компактность или рыхлость, присущие конституции соединительной ткани и её специализация связаны с разным количеством компонентов в ней.
Тканями на “основном веществе” считаются все части скелета: кости, хрящи, сухожилия, фасции покрытия, фасции мембран и мышечного ложа, соединительные поверхности полых органов, интерстициальной стромы паренхимы различных внутренних органов, а также эластичная и опорная часть артериальных и венозных сосудов.
Ткани с основным веществом имеют функции разного порядка: от чисто механических (опора, поддержка, крепление и т. п.) до пищевых, включая в эти последние также способность складировать различные вещества подлежащие удалению или, по крайней мере, не нужные для метаболических процессов в этот момент.
Соединительная ткань, пусть различной специализации, присутствует в каждом отделе организма; единственное исключение представляет нервная ткань, которая использует другие структурные типы для аналогичной опорной функции.

Фасциальная основа


Является самым наглядным примером комплексности индивидуума и простоты законов, им управляющих.
При кажущемся хаотическим с точки зрения анатомотопографической схематизации расположении, фасциальной основе удается включать в единое целое каждую отдельную часть, сдерживать её и давать ей направление специфического движения.
Второстепенная роль, отводимая фасциальной системе в учебниках анатомии, становится необъяснимой, если учитывать, что первая иммунная защита организма зависит именно от целостности и скорости ответа фасций, являющихся резервуаром иммунных структур, которые при вирусной или бактериальной агрессии вступают в действие.
^ РОЛЬ ФАСЦИАЛЬНОЙ СИСТЕМЫ
Роль фасциальной системы в организме многогранна, поскольку, за исключением нервной системы, она вовлекает в круг своего действия все структуры.
Чтобы стала понятнее эта роль, полезно сделать раскладку в отношении первичных, или базовых функций:

- механическая функция - метаболическая функция

-
которые, будучи совершенно различными, все же дополняют друг друга и зависят друг от друга.
^ Механическая роль
Включает функции:
- позиционной стабилизации - поддержки - покрытия
- связи с целым - механической передачи сил
- перераспределения прямых сил на отдельные мышцы - защиты
^ Метаболическая роль
Включает функции:
- питания тканей
- диффузии веществ для метаболизма тканей
- сбора и регулирования жидкостей с последующим выводом продуктов катаболизма
- ввода питательных веществ и депозитации излишков в форме жиров.
Эти виды деятельности всегда контролируются фасциальными структурами. Их близость с органами, тканями и отдельными клетками позволяет передавать механическое натяжение и последующую релаксацию, достаточные для перемешивания жидкостей, гарантирующего правильный гомеостаз на всех уровнях вплоть до самой маленькой клетки. Чтобы обеспечить эту роль, необходимо такое устройство, которое не позволяет ни на миг прервать постоянный процесс и может равномерно расположиться от поверхности до глубины, достигая самых скрытых закоулков тела.
^ ЭЛЕМЕНТЫ ФАСЦИАЛЬНОЙ ТКАНИ

Клеточный компонент


Соединительная ткань образует непрерывную паутину, которая поддерживает, помимо самой себя (самоподдержка), каждую клетку, связку, орган, внутренний и внешний, аппарат, сегмент тела.
В отличие от других видов тканей, характеризующихся различной внутренней структурой, клеточный компонент соединительной ткани погружен в более или менее достаточное количество межклеточного вещества.
Межклеточный компонент в свою очередь бывает двух типов: оформленный в волокна и так называемое аморфное вещество (или же основное вещество), содержащее тканевую жидкость (известную также как интерстициальная жидкость).
Соединительная ткань - это самый дифференцированный компонент человеческого тела; вследствие этого внутри- и межклеточные матриксы будут очень сильно отличаться в своем строении.
Начиная от соединительной ткани зародыша (характеризующейся наличием мелких продолговатых клеток неправильной формы, аморфным внутриклеточным веществом, в основном жидким и первоначально лишенным ретикулярного компонента и протеина, а также наличием слизистой соединительной ткани), наблюдается дифференцировка во всех типах клеток соединительной ткани, производящих фибробласты, жировые клетки, мастоциты, хондробласты, остеобласты, гладкие мышечные волокна, элементы крови, клетки эндотелия и др.
Соединительная ткань в узком смысле слова подразделяется на плотную и рыхлую, в зависимости от плотности и устройства составляющих ее волокон. Существуют кроме того другие подвиды соединительной ткани, отличающиеся особыми свойствами: слизистая, пигментная, эластичная, ретикулярная, жировая и пр.
Рыхлая соединительная ткань
Заполняет все пространства, расположенные между различными органами, перемежая их и одновременно связывая между собой; окружает мышцы и нервы, проникая внутрь их и обволакивая пучки мышечных и нервных волокон и отдельные волокна. Выполняет обязанности механического и/или метаболического типа, заботясь о защите от аномальных клеточных элементов. Рыхлая соединительная ткань может иметь три основные категории волокон: коллагеновые, ретикулярные и эластические.
^ Коллагеновые волокна
Являются категорией самых тонких и самых многочисленных из волокон, присутствующих в мягкой соединительной ткани. Играют главную роль в кальцифицировании костного матрикса. Это гибкие, но малорастяжимые волокна, вследствие чего они оказывают значительное сопротивление натяжению.
^ Ретикулярные волокна
Многочисленные в период изменения организма в мягкой соединительной ткани мезенхимы, они преобразуются со временем в коллагеновые волокна.
У взрослого человека они присутствуют в небольшом количестве на уровне ординарной рыхлой соединительной ткани, хотя преобладают в определенных местах, там, где ткань приобретает характер ретикулярной соединительной ткани (периэндотелий капилляров, сарколемма мышечных волокон, ретикулярная оболочка периферийных нервных волокон, строма железистых органов, строма опоры лимфоидных органов и костного мозга).
^ Эластические волокна
Менее многочисленные, чем коллагеновые, в ординарной рыхлой соединительной ткани, они становятся превалирующими в эластичной ткани (их очень много, например, в эластичной мембране артерий и в связочно - сухожильных структурах).
Чтобы лучше справляться со своей задачей, эти волокна не собираются в пучки, как ретикулярные, а идут, разветвляясь и образуя эластичную сетку.
Их отличительным свойством является способность легко растягиваться, а затем возвращаться к обычной длине по прекращении натяжения. Механическое сопротивление у них значительно ниже, чем у коллагеновых волокон.
^ Аморфное основное вещество
Клетки и волокна погружены в аморфный материал, получивший название основного вещества, или межклеточного аморфного вещества, обладающий свойствами вязкой коллоидной субстанции или жидкого геля и способностью связывать различное количество воды.
Аморфное вещество обязано своими функциональными свойствами содержащимся в нем макромолекулярным соединениям, называемым мукополисахариды. Его функции следующие:


^ Клеточные компоненты рыхлой соединительной ткани
Клетки рыхлой соединительной ткани, кроме вырабатывания межклеточного вещества, осуществляют одну из самых важных функций организма, такую как защита от чужеродных веществ и возбудителей инфекции путем фагоцитоза и выработки антител.
Клетки рыхлой соединительной ткани относятся к разным категориям, направленым на выполнение специальных функций.
^ Мезенхимные клетки (недифференцированные)
Обладая высокой способностью дифференциации, не имеют других особых свойств; у взрослого человека представлены в небольшом количестве.
^ Фибробласты и фиброциты
Самые многочисленные клеточные компоненты мягкой соединительной ткани, направлены на выработку составных частей волокон, как эластических, так и коллагеновых, а также некоторых компонентов аморфного вещества.
^ Макрофаги и гистиоциты
По численности стоят после фиброфластов; их главная роль связана с процессами защиты. Их предшественниками являются моноциты, которые из циркулирующей крови переходят в соединительную ткань. Существуют закрепленные, неподвижные макрофаги и циркулирующие, свободные; независимо от типа, их действие варьируется в соответствии с возможным присутствием и/или концентрацией чужеродных элементов.
Феномен фагоцитоза имеет целью, кроме защиты, также транспортировку: с макрофагом перемещаются из клетки через капиллярный эндотелий фагоцитированные жидкости и жиры.
В областях, захваченных воспалительным процессом, значительно увеличивается число макрофагов.
Совокупность клеток, обладающих способностью фагоцитоза, получила название “система макрофагов” или, правильнее, “ретикульно-гистиоцитарная система”, в которой участвуют закрепленные и свободные макрофаги рыхлой соединительной ткани, селезенки, лимфатических узлов, костного мозга, серозных полостей, легочных альвеол, а также часть ретикулярных клеток кроветворных органов и др.
Моноциты
Являют собой другой тип мигрирующих клеток, происходящих из крови. В случае инфекции призываются из крови в направлении соединительной ткани и, превращаясь в микрофаги, выполняют фагоцитарные функции.
^ Жировые клетки
Присутствуют в рыхлой соединительной ткани в ограниченном количестве, обычно собраны в группы; имеют тенденцию располагаться вдоль маленьких кровеносных сосудов.
В случае особо большого скопления, при котором они становятся преобладающим клеточным компонентом, получается разновидность соединительной ткани, называемая жировой тканью.
Мастоциты
Присутствуют в варьирующемся количестве в рыхлой соединительной ткани, имеют тенденцию скапливаться вдоль кровеносных сосудов. Это подвижные клетки, содержащие чрезвычайно важные в физиологическом отношении вещества, такие как гепарин и гистамин.
^ Лимфоциты и плазматические клетки
Лимфоциты, присутствующие в рыхлой соединительной ткани в малом количестве, происходят из циркулирующей крови и принимают участие в производстве антител. Плазматические клетки представляют собой основную форму передвижных антител (иммуноглобулин крови). Лимфоциты и плазматические клетки не являются разными клеточными типами, но различными функциональными состояниями одного и того же клеточного типа.
^ Нейтрофильные гранулоциты и эозинофилы
Присутствуют в рыхлой соединительной ткани только в случае воспалительного очага и происхождение их - кровяное. Представляют собой, при их высокой фагоцитарной способности, главный элемент защиты от инфекции.
Эозинофилы (или ацидофилы) обычно присутствуют в выборочных местах рыхлой соединительной ткани и подобны эозинофилам крови (от которых, впрочем, и происходят). Их особая функция еще не до конца выяснена.
Плотная соединительная ткань
В плотной соединительной ткани коллагеновые волокна собраны в большие пучки, как правило, значительного уплотнения. В этих пучках коллагеновые волокна могут сплетаться без упорядоченного направления или же располагаться параллельно друг другу по определенной схеме.
На основе типа и организации таких волокон плотная соединительная ткань подразделяется на регулярную и нерегулярную (равномерную и неравномерную).
^ Нерегулярная плотная соединительная ткань
Этот тип ткани встречается в дерме, в фиброзной капсуле, обволакивающей органы, в оболочке нервов и сухожилий, в надкостнице.
^ Регулярная плотная соединительная ткань
Пучки коллагеновых волокон плотно прилегают друг к другу и располагаются в направлении растяжения. Аморфного вещества мало, и присутствуют только фибробласты (сухожильные клетки), перемешанные с эластическими волокнами.
По близости от мест присоединения сухожилий наличествует особый тип хрящей, называемый волокнистый хрящ, богатый коллагеновыми волокнами, которые продолжаются связками сухожилий, обеспечивая присоединение последних к кости.
В собственно фасциальных структурах и апоневротических структурах, пучки коллагеновых волокон направлены менее регулярно, чем в сухожилиях.
Соединительные ткани с особыми свойствами
Существуют разнородные типы соединительной ткани; некоторые из них типичны, то есть обладают довольно общими требуемыми качествами, другие отличаются особыми свойствами, как, например, пигментная ткань, или слизистая соединительная ткань, присутствующие по большей мере в пуповине плода и на стадии эмбриона.
^ Ретикулярная соединительная ткань
У взрослого человека появляется в связи с восстановительными процессами после ранений или разрыва тканей, или же в выборочных местах, таких как ретикулярная оболочка сарколеммы мышечных и нервных волокон, ретикулярная строма кроветворных органов (костный мозг, селезенка, лимфатические узлы, миндалины и пр.) Ретикулярная строма - это особая трехмерная структура, образованная объединением многочисленных выростов ретикулярных клеток в трех пространственных плоскостях. В кроветворных органах ретикулярная ткань является не просто вариантом мягкой соединительной ткани, но собственной формой ткани, обладающей особыми свойствами.
^ Эластическая ткань
Эластические волокна присутствуют в разном количестве вместе с коллагеновыми волокнами в обыкновенной мягкой соединительной ткани. Их особенно много в дерме, что определяет ее эластичность.
Когда эластические волокна преобладают над коллагеновыми, эластическая плотная соединительная ткань приобретает желтоватый цвет (как в желтых связках позвоночника, в голосовых связках).
На уровне кровеносных сосудов значительное количество этой ткани обнаруживается в эластичных внутренней и внешней мембранах всех артерий и в средней мембране больших артерий. Здесь эластические волокна различной толщины располагаются особым образом, в несколько слоев, кругообразно, способствуя созданию трубчатой структуры.
^ Жировая ткань
В мягкой соединительной ткани присутствует ограниченное число клеток жирового типа; когда она собираются в большом количестве, становясь доминирующим клеточным типом, они образуют разновидность мягкой соединительной ткани, называемую жировой.
Эта составляющая соединительной ткани тела долгое время считалась лишенной собственной метаболической деятельности, простым складом липидов, а иной раз пассивной механической опорой. В настоящее время имеется тенденция приписывать жировой ткани более активную роль, поскольку столкнулись с тем, что ее клетки напрямую участвуют в некоторых синтезирующих метаболических процессах (в связи со стимуляцией, как гормональной, так и нервной).
Жировая ткань делится на белую и темную, по имеющейся окраске, отражающей специфические особенности. Основная роль жировой ткани все таки метаболическая (перемещение липидов в случае необходимости и депонирование в том случае, если они в избытке); механическая роль второстепенна, хотя для некоторых выборочных областей тела первостепенна именно ее механическая роль ( глазное яблоко, ладони и ступни).
^ Обычная или белая жировая соединительная ткань
У нее свои главные места складирования: под кожей, почечное ложе, сальники, брыжейка, брюшинная, подмышечная, паховая области и др.; ее наличие зависит от конституции, биотипа, морфологии, пола, возраста и т.п. Состоит из больших клеток, плотно прилегающих друг к другу, с малым количеством основного вещества между ними.
^ Темная жировая соединительная ткань
Присутствует в человеческом теле в ограниченном количестве и насколько известно сегодня, не имеет большого значения.

Опорные соединительные ткани


Хрящевая ткань
Принадлежит, вместе с костной и другими, к типологии опорных соединительных тканей, обладающих важными механическими и метаболическими свойствами.
Хрящ - это разновидность соединительной ткани, состоящая из клеток, называемых хондроцитами, погруженных в большое количество межклеточного вещества.
В эмбриональной фазе развития скелет человека почти полностью предваряется хрящевым зачатком. В фазе роста хрящ заменяется костью, в то время как в послеродовой фазе хрящ обнаруживается на суставном уровне и в пограничной зоне между диафизом и эпифизом длинных костей (хрящ сопряжения). У взрослого человека как таковые они остаются только на уровне суставных поверхностей, никогда не окостеневающих, и в немногих других местах (механическая опора внутреннего уха, носа, гортани, трахеи и бронхов, реберные хрящи). Не будучи пронизанным кровеносными сосудами, хрящ получает питание из составляющего его гелевого матрикса.
Основных типа хрящей три: гиалиновый, эластичный и волокнистый (гиалиновый - самая распространенная разновидность.
^ Гиалиновый хрящ
Составляет почти полностью скелетный зачаток эмбриона и хрящи сопряжения у ребенка; у взрослого, кроме того, что он покрывает поверхность суставов, способствует образованию реберных хрящей, колец трахеи, хрящей гортани и носа и др.
Обладает определенной эластичностью, в живую большей, чем в анатомическом свидетельстве, и оказывается состоящей из двух основных компонентов, коллагеновых волокон и аморфного матрикса, который, в отличие от такового же в соединительных тканях в узком смысле слова, является твердым.
^ Эластичный хрящ
К этой категории относится ушная раковина и надгортанник. Хотя этот хрящ состоит из большего числа эластических волокон, чем гиалиновый, его значение с остеопатической точки зрения меньшее в смысле возможностей лечения.
^ Волокнистый хрящ
Встречается на уровне межпозвоночных хрящей, некоторых внутрисуставных менисков, между первым ребром и грудиной, в суставной впадине, на уровне лобкового симфиза, круглой бедренной связки, и присоединения к кости некоторых сухожилий.
Является чем-то средним между плотной соединительной тканью и настоящим хрящом.
Этот тип хряща во многих местах продолжается волокнистой соединительной тканью так, что иногда не отличим от нее. Характерным примером являются межпозвоночные диски, состоящие в основном из волокнистого хряща, который продолжается, почти непрерывно, суставным хрящом и спинными связками смежных позвонков.
Модификации хряща
Как уже отмечалось, хрящ лишен собственной циркуляции, как лимфы, так и крови, вследствие чего продукты питания доставляются исключительно с помощью диффузии и впитывания через матрикс гель.
Это отсутствие специальной сосудистой системы имеет определяющее значение во всех регрессивных атрофических процессах. Особенно это касается гиалинового хряща, широкое распространение которого делает наиболее важным, порой разрушительным, его участие в этих процессах.
В старческом возрасте, а иногда в травмированных или в “испытавших стресс” дегенеративных воздействий зонах на хрящах отражаются процессы, связанные с биохимическими изменениями структуры и видоизменениями, зависящими от уменьшения метаболической активности, которое является следствием сокращения подвижности циркулирующих элементов питания.
Костная ткань
Это особая форма соединительной ткани, в которой наблюдается минерализация межклеточного матрикса, сообщающего кости характерную твердую структуру.
  • Контрольная работа
  • Контрольная работа
  • Контрольная работа
  • Контрольная работа
  • Контрольная работа
  • Контрольная работа
  • Контрольная работа
  • Контрольная работа
  • Контрольная работа
  • Контрольная работа
  • Контрольная работа
  • Контрольная работа
  • Контрольная работа
  • Контрольная работа
  • Контрольная работа
  • Контрольная работа
  • Контрольная работа
  • Контрольная работа
  • Контрольная работа
  • Контрольная работа
  • Контрольная работа
  • Контрольная работа
  • Контрольная работа
  • Контрольная работа
  • Контрольная работа
  • © sanaalar.ru
    Образовательные документы для студентов.