.RU
Карта сайта

I. ПРИЕМЫ ИЗМЕРЕНИЙ И СТАТИСТИЧЕСКИЕ СПОСОБЫ ОБРАБОТКИ ИХ РЕЗУЛЬТАТОВ В ПСИХОЛОГИЧЕСКОМ ИССЛЕДОВАНИИ

I. ПРИЕМЫ ИЗМЕРЕНИЙ И СТАТИСТИЧЕСКИЕ СПОСОБЫ ОБРАБОТКИ ИХ РЕЗУЛЬТАТОВ В ПСИХОЛОГИЧЕСКОМ ИССЛЕДОВАНИИ


В словесном описании результатов наблюдения и эксперимента трудно избежать элементов субъективизма, которые проявляются чаще всего в преждевременных выводах и необоснованных обобщениях. Известно, что качественное описание является недостаточно точным, поскольку с помощью языковых средств сложно передать дифференцированность изучаемых явлении и особенно своеобразие их динамики. Одно только качественное описание не позволяет определить также и степень ошибки наблюдения или эксперимента. Но это вовсе не означает, что в психологии необходимо отказаться от качественного анализа в пользу оперирования исключительно количественными показателями. Мы хотим подчеркнуть лишь то обстоятельство, что количественный анализ результатов исследования должен не только предшествовать, но и обязательно следовать за качественным анализом.

Это особенно важно для интерпретации результатов исследования. Именно таким образом может быть преодолен субъективизм, так как формулируемые суждения и выводы становятся более независимыми от личности исследователя и обеспечивается возможность их проверки. Знание различных приемов обработки и анализа результатов наблюдений и эксперимента с помощью статистических показателей является обязательным для психолога. Поэтому первый раздел нашего практикума посвящен анализу видов психологических измерений и способов статистической обработки получаемых при этом результатов. Однако следует иметь в виду, что знакомство с материалом данного раздела не может заменить студенту систематического изучения математической статистики. Нами будут рассмотрены лишь элементарные статистические методики, без которых нельзя обойтись на практических занятиях по общей и экспериментальной психологии.

Процесс измерения лежит в основе любой эмпирической науки. Беглый взгляд на историю науки показывает, что совершенствование принципов и техники измерения было основным фактором, обеспечивающим ее движение вперед. Самого высокого уровня развития на сегодняшний день достигли те ее области, которым быстрее удалось преодолеть трудности, связанные с разработкой методологических и методических проблем измерения. Это заставляет предполагать, что и будущее психологии как науки в большей мере зависит от успешного решения ее собственных, специфических вопросов измерения. Именно поэтому «математизация современной психологии распространяется на все ее разделы и дисциплины без какого-либо исключения. В этом смысле психология в ближайшем будущем может стать математической в такой же мере, в какой она уже является экспериментальной наукой»*.

* Психодиагностика в комплексном лонгитюдном исследовании студентов /Под ред. А. А. Бодалева и др. Л., 1974. С. 13   14.

Прежде чем рассмотреть приемы измерения, используемые в психологическом эксперименте, и способы статистической обработки его результатов, познакомимся с основными методами психологического исследования.

Исходя из порядка операций с объектами в научном исследовании, Б. Г. Ананьев разработал классификацию методов современной психологии. В основу ее он положил целостный цикл психологического исследования и все методы распределил по четырем группам. В первую группу, которую можно назвать группой организационных методов, Ананьев относит сравнительный, лонгитюдный (т. е. исследование одних и тех же лиц в течение длительного времени) и комплексный методы: «Они действуют на протяжении всего исследования, и их эффективность определяется по конечным результатам исследования...». Вторая группа методов включает известные также по традиционным классификациям эмпирические способы добывания научных данных. В эту группу входят: обсервационные методы (наблюдение и самонаблюдение), экспериментальные методы (лабораторные, полевые, психолого-педагогические), психодиагностические методы (тесты, анкеты, опросники, интервью, беседы), праксиметрические методы (приемы анализа процессов и продуктов деятельности: хронометрия, профессиографическое описание, оценка выполненных работ), моделирование (математическое, кибернетическое) и биографические методы (приемы исследования жизненного пути, изучение документации). Третью группу методов составляют приемы обработки результатов эксперимента и наблюдений. Ананьев в эту группу относит как стандартные приемы статистической обработки данных (количественная обработка), так и приемы качественного анализа, включая дифференциацию материала по классам, разработку типологии, составление психологической казуистики (описание случаев). Четвертая группа методов - интерпретационные методы - представлена в классификации Ананьева вариантами генетического и структурного методов. Генетический метод интерпретирует весь обработанный материал исследования в характеристиках развития, а структурный метод - в характеристиках типов связей между отдельными компонентами структуры изучаемой личности или структуры социальной группы.

Приступая к выбору методики, экспериментатор должен иметь четкое представление о том, что именно он хочет измерить и удовлетворят ли результаты измерения требованиям адекватного решения исследовательской или практической задачи. В первую очередь ему надлежит доказать валидность, надежность и объективность избранной методики. Под валидностью методики понимается адекватность ее предмету исследования. Количественно валидность определяется путем установления взаимосвязи между результатами, полученными с помощью данной методики, и каким-либо из внешних критериев. Поясним сказанное примером. Очевидно, что успешность обучения в какой-то степени обусловлена уровнем интеллектуального развития обучаемого, и поэтому в качестве внешнего критерия правомерно рассматривать оценку его успеваемости. Допустим, что было проведено тестовое исследование умственного развития группы лиц, например студентов, с помощью избранной методики. Так вот, применяемая методика может считаться валидной лишь в том случае, если между результатами тестирования и оценкой успеваемости в обучении будет обнаружена положительная взаимосвязь. Не менее важным аспектом оценки качества методики является ее надежность. Под надежностью психологической методики понимается точность производимых с ее помощью измерений. Иначе говоря, через надежность определяется пригодность данной методики в качестве измерительного инструмента. Наконец, объективность методики характеризует степень независимости результатов измерения от пользователя данной методики. Объективными результаты будут лишь в том случае, если, во-первых, они независимы от личностных особенностей пользователя и, во-вторых, исключен произвол в их обработке и интерпретации.

Для проверки валидности и надежности методик чаще всего привлекаются количественные (статистические) критерии оценки. Объективность методики можно обосновать исходя из положений общей теории измерений и специфики их в отношении психологического исследования. Конечно, это вовсе не означает, что психологическое исследование исчерпывается измерением. Однако знание разнообразных измерительных процедур вооружает психолога исследовательским инструментом, с помощью которого он способен решать психологические задачи.

ТИПЫ ИЗМЕРИТЕЛЬНЫХ ШКАЛ



С точки зрения теории измерения, все множество различных измерительных процедур, применяемых в психологии, является процедурами построения шкалы психологической переменной, иначе говоря, процедурами психологического шкалирования. В понимании большинства психологов шкалирование - это совокупность экспериментальных и математических приемов для измерения особенностей психических процессов и состояний. Вслед за С. С. Стивенсом в настоящее время понятие «шкалирование» рассматривают в качестве синонима понятия «измерение». Под шкалированием психологических процессов, свойств, объектов или событий понимается процесс приравнивания к этим процессам, свойствам, объектам или событиям чисел по определенным правилам, а именно таким образом, чтобы в отношениях чисел отображались отношения явлении, подлежащих измерению. Если постулируется, что в свойствах чисел отображаются количественные значения объектов реального предметного мира, то общую проблематику шкалирования правомерно рассматривать как частный случай проблемы отражения марксистско-ленинской теории познания.

Итак, измерение состоит в отображении эмпирических систем с помощью математических систем, а целью такого рода отображения является частичная замена действий, производимых с реальными предметами, формальными действиями с числами. Область чисел выполняет функцию модели определенных свойств предметов и в качестве средства познания дает возможность более глубоко проникать в объективно существующие свойства и взаимосвязи. В этом смысле шкалирование (измерение) служит главной силой, преобразующей психологию из науки описательной, следующей за фактами, в науку, умеющую предсказывать новые факты.

Понятно, что относительно разных эмпирических систем мы должны использовать разные методики измерения, т. е. применять измерительные шкалы разных типов. Понимание исследователем формальных аспектов измерения является необходимым условием для адекватного выбора им измерительных инструментов и процедур, а также для применения адекватных методов анализа полученных в наблюдении и эксперименте данных. Основываясь на правилах измерения, принято различать несколько типов шкал, с каждым из которых могут быть соотнесены конкретные процедуры шкалирования. При этом каждый тип шкалы может быть охарактеризован соответствующими числовыми свойствами. Рассмотрим более подробно основные свойства разных типов шкал, эмпирические операции, допустимые на уровне этих шкал, а также статистические приемы обработки и анализа исходных или, как их чаще называют, первичных результатов исследования.

Шкалы наименований,

или

номинативные шкалы.

Шкала наименований представляет собой взаимно-однозначное отображение некоторой эмпирической системы в числовой системе. Таким образом, шкала наименований отображает взаимооднозначное соответствие между классами эквивалентности, т. е. классами эмпирических объектов - обозначений. Само название «шкала наименований» указывает на то, что в этом случае шкальные значения играют роль лишь названий классов эквивалентности.

Шкалы наименований подчиняются законам равенства. То есть объект А может быть равен объекту В по признаку X, так что ХАВ; но по отношению к третьему объекту С по признаку Х он может быть неравным: ХА ХС. Любая другая связь между шкальными значениями, за исключением равенства, не имеет отношения к данному случаю, так как для данного типа шкал не существует никакого дополнительного определения.

Шкала наименований представляет собой наиболее общую форму шкал. Все типы шкал в каждом отдельном случае являются некоторыми видами шкал наименований, но обладающими при этом теми или иными дополнительными свойствами. При построении шкал наименований должны быть выполнены следующие требования: во-первых, каждый член некоторого множества объектов должен быть отнесен лишь к одному классу объектов (или к собирательному классу «прочие объекты») и, во-вторых, ни один из объектов не может быть отнесен одновременно к двум или большему числу классов. К примеру, если принять, что глаза у людей могут быть только светлыми или темными, то все люди по этому признаку разделяются на две группы. При этом люди с множеством оттенков глаз: голубых, серо-зеленых и серых попадут в класс «люди со светлыми глазами», а те, у которых глаза карие и темно-коричневые, - в класс «люди с темными глазами». Из приведенного примера видно, что отношения эквивалентности по заданному признаку между классифицируемыми объектами, как правило, грубее реальных отношений, существующих между объектами.

С формальной точки зрения установление классов эквивалентности как будто не вызывает никаких затруднений. В действительности, как это было показано предыдущим примером, понятие «равенство» можно трактовать более узко или более широко в зависимости от «тонкости» или «грубости» используемой классификации по заданному признаку. Проиллюстрируем это обстоятельство еще одним примером. Так, если делается попытка упорядочить события по признаку «мороз/оттепель», то температуры, обозначаемые как +1° и -1°, будут входить в два разных неэквивалентных класса, в то время как температуры +1° и +10° попадут в один класс и по признаку «мороз/оттепель» будут рассматриваться как эквивалентные события.

Приведенные примеры должны были показать, что при построении шкал наименований главными являются качественные различия, а количественные не принимаются во внимание. Поэтому числа, используемые в качестве обозначений классов эквивалентности в этих шкалах, не отражают количественных различий выраженности изучаемого признака.

В примере с температурой мы имели дело с дихотомической (делением на два класса), или альтернативной, классификацией. Эти классификации можно образовать по логическому принципу «А/не-А», т. е. согласно принципу наличия или отсутствия определенного признака. Примерами такого рода классификации могут быть: «нормальный/анормальный», «женатый / холостой», «решает задачу/не решает задачу» и т. п. В случае так называемой истинной дихотомии классы могут быть четко разделены по определенному признаку, например: «мужской / женский пол».

Однако бывают классификации с менее жесткими переходами признака, т. е. с довольно произвольными границами между классами эквивалентности, например: «способен к концентрации внимания/не способен к концентрации внимания». Именно с такого рода классификациями чаще всего и имеет дело психолог. Это так называемые квазидихотомические классификации. Построение и использование шкал с квазидихотомическими границами классов вызывает ряд затруднений. Первая трудность, которая при этом возникает, состоит в установлении границы классов. В частности, каков же будет в нашем примере критерии «способности» к концентрации внимания, как определить точку в континууме «концентрация внимания», дифференцирующую людей на «способных» и «неспособных» к концентрации внимания?

Разберем другой пример из области психологии мышления. На первый взгляд альтернатива «решил задачу /не решил задачу» вполне может быть расценена как истинно-дихотомическая классификация. И действительно, в принципе для отнесения любого конкретного решения к классу «решил задачу» достаточно соотнести получаемый в нем результат с результатом, полученным достаточно большой группой людей, аналогичным образом решивших данную задачу. Все остальные решения можно тогда отнести к классу «не решил задачу». Однако возникает вопрос: действительно ли данный человек решил эту задачу? И вот почему: вполне возможно, во-первых, что решение было случайным, т. е. случайно данный результат совпал с результатом решения других людей и, во-вторых, что этот класс задач заранее был известен данному человеку. Но, как правило, такого рода сопровождающие факторы, например в психодиагностических тестах, совершенно не учитываются.

В шкале наименований с числами, которые мы приписываем объектам или классам объектов, нельзя производить никаких арифметических действий. Числа, обозначающие классы, нельзя суммировать, вычитать, умножать и делить. Дело в том, что структура шкалы остается инвариантной по отношению к перемене обозначений (наименований) и к изменению последовательности, т. е. разного рода перестановкам. Следовательно, операция присвоения чисел классам объектов является совершенно произвольной операцией и ей не соответствуют операции, производимые с реальными объектами. Поэтому классы объектов можно обозначать любыми символами - произвольными числами, буквами или другими знаками при одном условии: каждый символ будет использован исключительно для обозначения одного класса объектов и одновременно ни один класс объектов не будет обозначаться двумя или большим числом символов.

Из вышесказанного уже очевидны те ограничения, которые накладываются на использование статистических приемов обработки результатов, полученных на уровне шкалы наименований. Поскольку операции арифметического характера не допускаются, то в качестве меры центральной тенденции можно использовать лишь моду. Модальный класс объектов определяют после подсчета абсолютных или относительных частот, т. е. встречаемости того или иного результата в каждом классе. В качестве меры тесноты взаимосвязи между различными массивами измерений можно использовать некоторые коэффициенты корреляции. Для оценки статистической значимости различий между частотами или между модами можно использовать критерий хи-квадрат.
  • Контрольная работа
  • Контрольная работа
  • Контрольная работа
  • Контрольная работа
  • Контрольная работа
  • Контрольная работа
  • Контрольная работа
  • Контрольная работа
  • Контрольная работа
  • Контрольная работа
  • Контрольная работа
  • Контрольная работа
  • Контрольная работа
  • Контрольная работа
  • Контрольная работа
  • Контрольная работа
  • Контрольная работа
  • Контрольная работа
  • Контрольная работа
  • Контрольная работа
  • Контрольная работа
  • Контрольная работа
  • Контрольная работа
  • Контрольная работа
  • Контрольная работа
  • © sanaalar.ru
    Образовательные документы для студентов.