.RU

Парадигмы и научно – исследовательские программы как эталоны научного познания

^

Парадигмы и научно – исследовательские программы как эталоны научного познания.


Понятие «парадигма»

(признанная научным сообществом модель постановки и решения проблем)

ввел Т. Кун. В рамках парадигмы формулируются общие базисные положения, используемые в теории, задаются идеалы научного объяснения и организации научного знания, его оценки.
Парадигма содержит особый способ организации знания, влияющий на выбор направления исследований и образцы решения конкретных проблем. Сама парадигма не выполняет непосредственно объяснительной функции и не является теорией, хотя и основана на определенной фундаментальной теории. Она выступает в роли предпосылки построения и обоснования различных теорий и определяет стиль научных исследований. Т. Кун причислял к парадигмам в истории науки аристотелевскую динамику, птолемеевскую астрономию, ньютоновскую механику и т.д.

Развитие научного знания внутри парадигмы получило название «нормальной науки». Смена парадигм является научной революцией. Например, смена классической ньютоновской физики релятивистской эйнштейновской.
Таким образом, согласно модели Куна, развитие науки представляет собой единство экстенсивного («нормальная наука») и интенсивного (научная революция) этапов. Утверждение новой парадигмы происходит в условиях огромного противодействия сторонников прежней. Поскольку новых подходов может быть несколько, то выбор принципов, составляющих будущую парадигму, происходит не рациональным способом, а скорее в результате иррационального акта веры в то, что мир устроен именно так.

^ Имре Лакатос

(Лакатош) предложил методологию научно-исследовательских программ, которая в отличие от модели Т. Куна основана на выборе одной из конкурирующих программ путем применения четких, рациональных критериев. История развития науки – это конкуренция научно - исследовательских программ, имеющих следующую структуру:
- «жесткое ядро», заключающее в себе исходные положения, неопровержимые для сторонников программы.
- «защитный пояс» – включает гипотезы, изменения в нем не затрагивают «жесткого ядра».
- «негативная эвристика» – защита ядра программы с помощью вспомогательных гипотез и допущений, которые снимают противоречия с аномальными фактами.

- «позитивная эвристика» – предположения, направленные на то, чтобы изменять и развивать «опровержимые варианты» исследовательской программы, т.е. определять проблемы, выделять защитный пояс вспомогательных гипотез, предвидеть аномалии и т.п. Ученые, работающие в рамках какой-либо научно-исследовательской программы, могут долгое время игнорировать противоречивые факты и критику. Они считают, что решение конструктивных задач, которое определяется «позитивной эвристикой», приведет к объяснению непонятных фактов. Это дает устойчивость развитию науки. Однако позитивная эвристическая сила любой научно-исследовательской программы все же исчерпывает себя и на смену ей приходит другая. Такое вытеснение одной программы другой является научной революцией.

  1. ^

    Системный подход в современной науке


Особенностью современного естествознания является осознанное внедрение идей системности во все его отрасли. Изучение структурной организации материи связаны с развитием системных представлений и включают некоторые концептуальные знания о системе и ее признаках, характеризующих состояния системы, ее поведение, организацию и самоорганизацию, взаимодействие с окружением, целенаправленность и предсказуемость поведения и др. свойства.
Наиболее простой классификацией систем является деление их на статические и динамические, которое, несмотря на его удобство все же условно, т.к. все в мире находится в постоянном изменении. Динамические системы делят на детерминистские и стохастические (вероятностные). Эта классификация основана на характере предсказания динамики поведения систем. В первом случае предсказания носят однозначный и достоверный характер. Такие системы исследуются в механике и астрономии. В отличие от них стохастические системы, которые обычно называют вероятностно – статистическими, имеют дело с массовыми или повторяющимися случайными событиями и явлениями. Поэтому предсказания в них имеют не достоверный, а лишь вероятностный характер.
По характеру взаимодействия с окружающей средой различают системы открытые и закрытые (изолированные), а иногда выделяют также частично открытые системы. Такая классификация носит в основном условный характер, т.к. представление о закрытых системах возникло в классической термодинамике как определенная абстракция. Подавляющее большинство, если не все системы, являются открытыми.
Многие сложноорганизованные системы, встречающиеся в социальном мире, являются целенаправленными, т.е. ориентированными на достижение одной или нескольких целей, причем в разных подсистемах и на разных уровнях организации эти цели могут быть различными и даже придти в конфликт друг с другом.
Классификация и изучение систем позволили выработать новый метод познания, который получил название системного подхода. Применение системных идей к анализу экономических и социальных процессов способствовало возникновению теории игр и теории принятия решений. Самым значительным шагом в развитии системного метода было появление кибернетики как общей теории управления в технических системах, живых организмах и обществе. Хотя отдельные теории управления существовали и до кибернетики, создание единого междисциплинарного подхода дало возможность раскрыть более глубокие и общие закономерности управления как процесса накопления, передачи и преобразования информации. Само же управление осуществляется с помощью алгоритмов, для обработки которых служат компьютеры.
Универсальная теория систем, обусловившая фундаментальную роль системного метода, выражает с одной стороны, единство материального мира, а с другой стороны, единство научного знания. Важным следствием такого рассмотрения материальных процессов стало ограничение роли редукции в познании систем. Стало ясно, что чем больше одни процессы отличаются от других, чем они качественно разнороднее, тем труднее поддаются редукции. Поэтому закономерности более сложных систем нельзя полностью сводить к законам низших форм или более простых систем. Как антипод редукционистского подхода возникает холистический подход (от греч. holos – целый), согласно которому целое всегда предшествует частям и всегда важнее частей.
Всякая система есть целое, образованное взаимосвязанными и взаимодействующими его частями. Поэтому процесс познания природных и социальных систем может быть успешным только тогда, когда в них части и целое будут изучаться не в противопоставлении, а во взаимодействии друг с другом.
Современная наука рассматривает системы как сложные, открытые, обладающие множеством возможностей новых путей развития. Процессы развития и функционирования сложной системы имеют характер самоорганизации, т.е. возникновения внутренне согласованного функционирования за счет внутренних связей и связей с внешней средой. Самоорганизация – это естественнонаучное выражение процесса самодвижения материи. Способностью к самоорганизации обладают системы живой и неживой природы, а также искусственные системы.
  1. Контрольная работа
  2. Контрольная работа
  3. Контрольная работа
  4. Контрольная работа
  5. Контрольная работа
  6. Контрольная работа
  7. Контрольная работа
  8. Контрольная работа
  9. Контрольная работа
  10. Контрольная работа
  11. Контрольная работа
  12. Контрольная работа
  13. Контрольная работа
  14. Контрольная работа
  15. Контрольная работа
  16. Контрольная работа
  17. Контрольная работа
  18. Контрольная работа
  19. Контрольная работа
  20. Контрольная работа
  21. Контрольная работа
  22. Контрольная работа
  23. Контрольная работа
  24. Контрольная работа
  25. Контрольная работа
© sanaalar.ru
Образовательные документы для студентов.